first commit
This commit is contained in:
110
models/ETSformer.py
Normal file
110
models/ETSformer.py
Normal file
@ -0,0 +1,110 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from layers.Embed import DataEmbedding
|
||||
from layers.ETSformer_EncDec import EncoderLayer, Encoder, DecoderLayer, Decoder, Transform
|
||||
|
||||
|
||||
class Model(nn.Module):
|
||||
"""
|
||||
Paper link: https://arxiv.org/abs/2202.01381
|
||||
"""
|
||||
|
||||
def __init__(self, configs):
|
||||
super(Model, self).__init__()
|
||||
self.task_name = configs.task_name
|
||||
self.seq_len = configs.seq_len
|
||||
self.label_len = configs.label_len
|
||||
if self.task_name == 'classification' or self.task_name == 'anomaly_detection' or self.task_name == 'imputation':
|
||||
self.pred_len = configs.seq_len
|
||||
else:
|
||||
self.pred_len = configs.pred_len
|
||||
|
||||
assert configs.e_layers == configs.d_layers, "Encoder and decoder layers must be equal"
|
||||
|
||||
# Embedding
|
||||
self.enc_embedding = DataEmbedding(configs.enc_in, configs.d_model, configs.embed, configs.freq,
|
||||
configs.dropout)
|
||||
|
||||
# Encoder
|
||||
self.encoder = Encoder(
|
||||
[
|
||||
EncoderLayer(
|
||||
configs.d_model, configs.n_heads, configs.enc_in, configs.seq_len, self.pred_len, configs.top_k,
|
||||
dim_feedforward=configs.d_ff,
|
||||
dropout=configs.dropout,
|
||||
activation=configs.activation,
|
||||
) for _ in range(configs.e_layers)
|
||||
]
|
||||
)
|
||||
# Decoder
|
||||
self.decoder = Decoder(
|
||||
[
|
||||
DecoderLayer(
|
||||
configs.d_model, configs.n_heads, configs.c_out, self.pred_len,
|
||||
dropout=configs.dropout,
|
||||
) for _ in range(configs.d_layers)
|
||||
],
|
||||
)
|
||||
self.transform = Transform(sigma=0.2)
|
||||
|
||||
if self.task_name == 'classification':
|
||||
self.act = torch.nn.functional.gelu
|
||||
self.dropout = nn.Dropout(configs.dropout)
|
||||
self.projection = nn.Linear(configs.d_model * configs.seq_len, configs.num_class)
|
||||
|
||||
def forecast(self, x_enc, x_mark_enc, x_dec, x_mark_dec):
|
||||
with torch.no_grad():
|
||||
if self.training:
|
||||
x_enc = self.transform.transform(x_enc)
|
||||
res = self.enc_embedding(x_enc, x_mark_enc)
|
||||
level, growths, seasons = self.encoder(res, x_enc, attn_mask=None)
|
||||
|
||||
growth, season = self.decoder(growths, seasons)
|
||||
preds = level[:, -1:] + growth + season
|
||||
return preds
|
||||
|
||||
def imputation(self, x_enc, x_mark_enc, x_dec, x_mark_dec, mask):
|
||||
res = self.enc_embedding(x_enc, x_mark_enc)
|
||||
level, growths, seasons = self.encoder(res, x_enc, attn_mask=None)
|
||||
growth, season = self.decoder(growths, seasons)
|
||||
preds = level[:, -1:] + growth + season
|
||||
return preds
|
||||
|
||||
def anomaly_detection(self, x_enc):
|
||||
res = self.enc_embedding(x_enc, None)
|
||||
level, growths, seasons = self.encoder(res, x_enc, attn_mask=None)
|
||||
growth, season = self.decoder(growths, seasons)
|
||||
preds = level[:, -1:] + growth + season
|
||||
return preds
|
||||
|
||||
def classification(self, x_enc, x_mark_enc):
|
||||
res = self.enc_embedding(x_enc, None)
|
||||
_, growths, seasons = self.encoder(res, x_enc, attn_mask=None)
|
||||
|
||||
growths = torch.sum(torch.stack(growths, 0), 0)[:, :self.seq_len, :]
|
||||
seasons = torch.sum(torch.stack(seasons, 0), 0)[:, :self.seq_len, :]
|
||||
|
||||
enc_out = growths + seasons
|
||||
output = self.act(enc_out) # the output transformer encoder/decoder embeddings don't include non-linearity
|
||||
output = self.dropout(output)
|
||||
|
||||
# Output
|
||||
output = output * x_mark_enc.unsqueeze(-1) # zero-out padding embeddings
|
||||
output = output.reshape(output.shape[0], -1) # (batch_size, seq_length * d_model)
|
||||
output = self.projection(output) # (batch_size, num_classes)
|
||||
return output
|
||||
|
||||
def forward(self, x_enc, x_mark_enc, x_dec, x_mark_dec, mask=None):
|
||||
if self.task_name == 'long_term_forecast' or self.task_name == 'short_term_forecast':
|
||||
dec_out = self.forecast(x_enc, x_mark_enc, x_dec, x_mark_dec)
|
||||
return dec_out[:, -self.pred_len:, :] # [B, L, D]
|
||||
if self.task_name == 'imputation':
|
||||
dec_out = self.imputation(x_enc, x_mark_enc, x_dec, x_mark_dec, mask)
|
||||
return dec_out # [B, L, D]
|
||||
if self.task_name == 'anomaly_detection':
|
||||
dec_out = self.anomaly_detection(x_enc)
|
||||
return dec_out # [B, L, D]
|
||||
if self.task_name == 'classification':
|
||||
dec_out = self.classification(x_enc, x_mark_enc)
|
||||
return dec_out # [B, N]
|
||||
return None
|
Reference in New Issue
Block a user