first commit

This commit is contained in:
gameloader
2025-08-28 10:17:59 +00:00
commit d6dd462886
350 changed files with 39789 additions and 0 deletions

145
models/Crossformer.py Normal file
View File

@ -0,0 +1,145 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
from layers.Crossformer_EncDec import scale_block, Encoder, Decoder, DecoderLayer
from layers.Embed import PatchEmbedding
from layers.SelfAttention_Family import AttentionLayer, FullAttention, TwoStageAttentionLayer
from models.PatchTST import FlattenHead
from math import ceil
class Model(nn.Module):
"""
Paper link: https://openreview.net/pdf?id=vSVLM2j9eie
"""
def __init__(self, configs):
super(Model, self).__init__()
self.enc_in = configs.enc_in
self.seq_len = configs.seq_len
self.pred_len = configs.pred_len
self.seg_len = 12
self.win_size = 2
self.task_name = configs.task_name
# The padding operation to handle invisible sgemnet length
self.pad_in_len = ceil(1.0 * configs.seq_len / self.seg_len) * self.seg_len
self.pad_out_len = ceil(1.0 * configs.pred_len / self.seg_len) * self.seg_len
self.in_seg_num = self.pad_in_len // self.seg_len
self.out_seg_num = ceil(self.in_seg_num / (self.win_size ** (configs.e_layers - 1)))
self.head_nf = configs.d_model * self.out_seg_num
# Embedding
self.enc_value_embedding = PatchEmbedding(configs.d_model, self.seg_len, self.seg_len, self.pad_in_len - configs.seq_len, 0)
self.enc_pos_embedding = nn.Parameter(
torch.randn(1, configs.enc_in, self.in_seg_num, configs.d_model))
self.pre_norm = nn.LayerNorm(configs.d_model)
# Encoder
self.encoder = Encoder(
[
scale_block(configs, 1 if l == 0 else self.win_size, configs.d_model, configs.n_heads, configs.d_ff,
1, configs.dropout,
self.in_seg_num if l == 0 else ceil(self.in_seg_num / self.win_size ** l), configs.factor
) for l in range(configs.e_layers)
]
)
# Decoder
self.dec_pos_embedding = nn.Parameter(
torch.randn(1, configs.enc_in, (self.pad_out_len // self.seg_len), configs.d_model))
self.decoder = Decoder(
[
DecoderLayer(
TwoStageAttentionLayer(configs, (self.pad_out_len // self.seg_len), configs.factor, configs.d_model, configs.n_heads,
configs.d_ff, configs.dropout),
AttentionLayer(
FullAttention(False, configs.factor, attention_dropout=configs.dropout,
output_attention=False),
configs.d_model, configs.n_heads),
self.seg_len,
configs.d_model,
configs.d_ff,
dropout=configs.dropout,
# activation=configs.activation,
)
for l in range(configs.e_layers + 1)
],
)
if self.task_name == 'imputation' or self.task_name == 'anomaly_detection':
self.head = FlattenHead(configs.enc_in, self.head_nf, configs.seq_len,
head_dropout=configs.dropout)
elif self.task_name == 'classification':
self.flatten = nn.Flatten(start_dim=-2)
self.dropout = nn.Dropout(configs.dropout)
self.projection = nn.Linear(
self.head_nf * configs.enc_in, configs.num_class)
def forecast(self, x_enc, x_mark_enc, x_dec, x_mark_dec):
# embedding
x_enc, n_vars = self.enc_value_embedding(x_enc.permute(0, 2, 1))
x_enc = rearrange(x_enc, '(b d) seg_num d_model -> b d seg_num d_model', d = n_vars)
x_enc += self.enc_pos_embedding
x_enc = self.pre_norm(x_enc)
enc_out, attns = self.encoder(x_enc)
dec_in = repeat(self.dec_pos_embedding, 'b ts_d l d -> (repeat b) ts_d l d', repeat=x_enc.shape[0])
dec_out = self.decoder(dec_in, enc_out)
return dec_out
def imputation(self, x_enc, x_mark_enc, x_dec, x_mark_dec, mask):
# embedding
x_enc, n_vars = self.enc_value_embedding(x_enc.permute(0, 2, 1))
x_enc = rearrange(x_enc, '(b d) seg_num d_model -> b d seg_num d_model', d=n_vars)
x_enc += self.enc_pos_embedding
x_enc = self.pre_norm(x_enc)
enc_out, attns = self.encoder(x_enc)
dec_out = self.head(enc_out[-1].permute(0, 1, 3, 2)).permute(0, 2, 1)
return dec_out
def anomaly_detection(self, x_enc):
# embedding
x_enc, n_vars = self.enc_value_embedding(x_enc.permute(0, 2, 1))
x_enc = rearrange(x_enc, '(b d) seg_num d_model -> b d seg_num d_model', d=n_vars)
x_enc += self.enc_pos_embedding
x_enc = self.pre_norm(x_enc)
enc_out, attns = self.encoder(x_enc)
dec_out = self.head(enc_out[-1].permute(0, 1, 3, 2)).permute(0, 2, 1)
return dec_out
def classification(self, x_enc, x_mark_enc):
# embedding
x_enc, n_vars = self.enc_value_embedding(x_enc.permute(0, 2, 1))
x_enc = rearrange(x_enc, '(b d) seg_num d_model -> b d seg_num d_model', d=n_vars)
x_enc += self.enc_pos_embedding
x_enc = self.pre_norm(x_enc)
enc_out, attns = self.encoder(x_enc)
# Output from Non-stationary Transformer
output = self.flatten(enc_out[-1].permute(0, 1, 3, 2))
output = self.dropout(output)
output = output.reshape(output.shape[0], -1)
output = self.projection(output)
return output
def forward(self, x_enc, x_mark_enc, x_dec, x_mark_dec, mask=None):
if self.task_name == 'long_term_forecast' or self.task_name == 'short_term_forecast':
dec_out = self.forecast(x_enc, x_mark_enc, x_dec, x_mark_dec)
return dec_out[:, -self.pred_len:, :] # [B, L, D]
if self.task_name == 'imputation':
dec_out = self.imputation(x_enc, x_mark_enc, x_dec, x_mark_dec, mask)
return dec_out # [B, L, D]
if self.task_name == 'anomaly_detection':
dec_out = self.anomaly_detection(x_enc)
return dec_out # [B, L, D]
if self.task_name == 'classification':
dec_out = self.classification(x_enc, x_mark_enc)
return dec_out # [B, N]
return None