first commit
This commit is contained in:
157
models/Autoformer.py
Normal file
157
models/Autoformer.py
Normal file
@ -0,0 +1,157 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from layers.Embed import DataEmbedding, DataEmbedding_wo_pos
|
||||
from layers.AutoCorrelation import AutoCorrelation, AutoCorrelationLayer
|
||||
from layers.Autoformer_EncDec import Encoder, Decoder, EncoderLayer, DecoderLayer, my_Layernorm, series_decomp
|
||||
import math
|
||||
import numpy as np
|
||||
|
||||
|
||||
class Model(nn.Module):
|
||||
"""
|
||||
Autoformer is the first method to achieve the series-wise connection,
|
||||
with inherent O(LlogL) complexity
|
||||
Paper link: https://openreview.net/pdf?id=I55UqU-M11y
|
||||
"""
|
||||
|
||||
def __init__(self, configs):
|
||||
super(Model, self).__init__()
|
||||
self.task_name = configs.task_name
|
||||
self.seq_len = configs.seq_len
|
||||
self.label_len = configs.label_len
|
||||
self.pred_len = configs.pred_len
|
||||
|
||||
# Decomp
|
||||
kernel_size = configs.moving_avg
|
||||
self.decomp = series_decomp(kernel_size)
|
||||
|
||||
# Embedding
|
||||
self.enc_embedding = DataEmbedding_wo_pos(configs.enc_in, configs.d_model, configs.embed, configs.freq,
|
||||
configs.dropout)
|
||||
# Encoder
|
||||
self.encoder = Encoder(
|
||||
[
|
||||
EncoderLayer(
|
||||
AutoCorrelationLayer(
|
||||
AutoCorrelation(False, configs.factor, attention_dropout=configs.dropout,
|
||||
output_attention=False),
|
||||
configs.d_model, configs.n_heads),
|
||||
configs.d_model,
|
||||
configs.d_ff,
|
||||
moving_avg=configs.moving_avg,
|
||||
dropout=configs.dropout,
|
||||
activation=configs.activation
|
||||
) for l in range(configs.e_layers)
|
||||
],
|
||||
norm_layer=my_Layernorm(configs.d_model)
|
||||
)
|
||||
# Decoder
|
||||
if self.task_name == 'long_term_forecast' or self.task_name == 'short_term_forecast':
|
||||
self.dec_embedding = DataEmbedding_wo_pos(configs.dec_in, configs.d_model, configs.embed, configs.freq,
|
||||
configs.dropout)
|
||||
self.decoder = Decoder(
|
||||
[
|
||||
DecoderLayer(
|
||||
AutoCorrelationLayer(
|
||||
AutoCorrelation(True, configs.factor, attention_dropout=configs.dropout,
|
||||
output_attention=False),
|
||||
configs.d_model, configs.n_heads),
|
||||
AutoCorrelationLayer(
|
||||
AutoCorrelation(False, configs.factor, attention_dropout=configs.dropout,
|
||||
output_attention=False),
|
||||
configs.d_model, configs.n_heads),
|
||||
configs.d_model,
|
||||
configs.c_out,
|
||||
configs.d_ff,
|
||||
moving_avg=configs.moving_avg,
|
||||
dropout=configs.dropout,
|
||||
activation=configs.activation,
|
||||
)
|
||||
for l in range(configs.d_layers)
|
||||
],
|
||||
norm_layer=my_Layernorm(configs.d_model),
|
||||
projection=nn.Linear(configs.d_model, configs.c_out, bias=True)
|
||||
)
|
||||
if self.task_name == 'imputation':
|
||||
self.projection = nn.Linear(
|
||||
configs.d_model, configs.c_out, bias=True)
|
||||
if self.task_name == 'anomaly_detection':
|
||||
self.projection = nn.Linear(
|
||||
configs.d_model, configs.c_out, bias=True)
|
||||
if self.task_name == 'classification':
|
||||
self.act = F.gelu
|
||||
self.dropout = nn.Dropout(configs.dropout)
|
||||
self.projection = nn.Linear(
|
||||
configs.d_model * configs.seq_len, configs.num_class)
|
||||
|
||||
def forecast(self, x_enc, x_mark_enc, x_dec, x_mark_dec):
|
||||
# decomp init
|
||||
mean = torch.mean(x_enc, dim=1).unsqueeze(
|
||||
1).repeat(1, self.pred_len, 1)
|
||||
zeros = torch.zeros([x_dec.shape[0], self.pred_len,
|
||||
x_dec.shape[2]], device=x_enc.device)
|
||||
seasonal_init, trend_init = self.decomp(x_enc)
|
||||
# decoder input
|
||||
trend_init = torch.cat(
|
||||
[trend_init[:, -self.label_len:, :], mean], dim=1)
|
||||
seasonal_init = torch.cat(
|
||||
[seasonal_init[:, -self.label_len:, :], zeros], dim=1)
|
||||
# enc
|
||||
enc_out = self.enc_embedding(x_enc, x_mark_enc)
|
||||
enc_out, attns = self.encoder(enc_out, attn_mask=None)
|
||||
# dec
|
||||
dec_out = self.dec_embedding(seasonal_init, x_mark_dec)
|
||||
seasonal_part, trend_part = self.decoder(dec_out, enc_out, x_mask=None, cross_mask=None,
|
||||
trend=trend_init)
|
||||
# final
|
||||
dec_out = trend_part + seasonal_part
|
||||
return dec_out
|
||||
|
||||
def imputation(self, x_enc, x_mark_enc, x_dec, x_mark_dec, mask):
|
||||
# enc
|
||||
enc_out = self.enc_embedding(x_enc, x_mark_enc)
|
||||
enc_out, attns = self.encoder(enc_out, attn_mask=None)
|
||||
# final
|
||||
dec_out = self.projection(enc_out)
|
||||
return dec_out
|
||||
|
||||
def anomaly_detection(self, x_enc):
|
||||
# enc
|
||||
enc_out = self.enc_embedding(x_enc, None)
|
||||
enc_out, attns = self.encoder(enc_out, attn_mask=None)
|
||||
# final
|
||||
dec_out = self.projection(enc_out)
|
||||
return dec_out
|
||||
|
||||
def classification(self, x_enc, x_mark_enc):
|
||||
# enc
|
||||
enc_out = self.enc_embedding(x_enc, None)
|
||||
enc_out, attns = self.encoder(enc_out, attn_mask=None)
|
||||
|
||||
# Output
|
||||
# the output transformer encoder/decoder embeddings don't include non-linearity
|
||||
output = self.act(enc_out)
|
||||
output = self.dropout(output)
|
||||
# zero-out padding embeddings
|
||||
output = output * x_mark_enc.unsqueeze(-1)
|
||||
# (batch_size, seq_length * d_model)
|
||||
output = output.reshape(output.shape[0], -1)
|
||||
output = self.projection(output) # (batch_size, num_classes)
|
||||
return output
|
||||
|
||||
def forward(self, x_enc, x_mark_enc, x_dec, x_mark_dec, mask=None):
|
||||
if self.task_name == 'long_term_forecast' or self.task_name == 'short_term_forecast':
|
||||
dec_out = self.forecast(x_enc, x_mark_enc, x_dec, x_mark_dec)
|
||||
return dec_out[:, -self.pred_len:, :] # [B, L, D]
|
||||
if self.task_name == 'imputation':
|
||||
dec_out = self.imputation(
|
||||
x_enc, x_mark_enc, x_dec, x_mark_dec, mask)
|
||||
return dec_out # [B, L, D]
|
||||
if self.task_name == 'anomaly_detection':
|
||||
dec_out = self.anomaly_detection(x_enc)
|
||||
return dec_out # [B, L, D]
|
||||
if self.task_name == 'classification':
|
||||
dec_out = self.classification(x_enc, x_mark_enc)
|
||||
return dec_out # [B, N]
|
||||
return None
|
Reference in New Issue
Block a user