first commit
This commit is contained in:
1
data_provider/__init__.py
Normal file
1
data_provider/__init__.py
Normal file
@ -0,0 +1 @@
|
||||
|
86
data_provider/data_factory.py
Normal file
86
data_provider/data_factory.py
Normal file
@ -0,0 +1,86 @@
|
||||
from data_provider.data_loader import Dataset_ETT_hour, Dataset_ETT_minute, Dataset_Custom, Dataset_M4, PSMSegLoader, \
|
||||
MSLSegLoader, SMAPSegLoader, SMDSegLoader, SWATSegLoader, UEAloader
|
||||
from data_provider.uea import collate_fn
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
data_dict = {
|
||||
'ETTh1': Dataset_ETT_hour,
|
||||
'ETTh2': Dataset_ETT_hour,
|
||||
'ETTm1': Dataset_ETT_minute,
|
||||
'ETTm2': Dataset_ETT_minute,
|
||||
'custom': Dataset_Custom,
|
||||
'm4': Dataset_M4,
|
||||
'PSM': PSMSegLoader,
|
||||
'MSL': MSLSegLoader,
|
||||
'SMAP': SMAPSegLoader,
|
||||
'SMD': SMDSegLoader,
|
||||
'SWAT': SWATSegLoader,
|
||||
'UEA': UEAloader
|
||||
}
|
||||
|
||||
|
||||
def data_provider(args, flag):
|
||||
Data = data_dict[args.data]
|
||||
timeenc = 0 if args.embed != 'timeF' else 1
|
||||
|
||||
shuffle_flag = False if (flag == 'test' or flag == 'TEST') else True
|
||||
drop_last = False
|
||||
batch_size = args.batch_size
|
||||
freq = args.freq
|
||||
|
||||
if args.task_name == 'anomaly_detection':
|
||||
drop_last = False
|
||||
data_set = Data(
|
||||
args = args,
|
||||
root_path=args.root_path,
|
||||
win_size=args.seq_len,
|
||||
flag=flag,
|
||||
)
|
||||
print(flag, len(data_set))
|
||||
data_loader = DataLoader(
|
||||
data_set,
|
||||
batch_size=batch_size,
|
||||
shuffle=shuffle_flag,
|
||||
num_workers=args.num_workers,
|
||||
drop_last=drop_last)
|
||||
return data_set, data_loader
|
||||
elif args.task_name == 'classification':
|
||||
drop_last = False
|
||||
data_set = Data(
|
||||
args = args,
|
||||
root_path=args.root_path,
|
||||
flag=flag,
|
||||
)
|
||||
|
||||
data_loader = DataLoader(
|
||||
data_set,
|
||||
batch_size=batch_size,
|
||||
shuffle=shuffle_flag,
|
||||
num_workers=args.num_workers,
|
||||
drop_last=drop_last,
|
||||
collate_fn=lambda x: collate_fn(x, max_len=args.seq_len)
|
||||
)
|
||||
return data_set, data_loader
|
||||
else:
|
||||
if args.data == 'm4':
|
||||
drop_last = False
|
||||
data_set = Data(
|
||||
args = args,
|
||||
root_path=args.root_path,
|
||||
data_path=args.data_path,
|
||||
flag=flag,
|
||||
size=[args.seq_len, args.label_len, args.pred_len],
|
||||
features=args.features,
|
||||
target=args.target,
|
||||
timeenc=timeenc,
|
||||
freq=freq,
|
||||
seasonal_patterns=args.seasonal_patterns
|
||||
)
|
||||
print(flag, len(data_set))
|
||||
data_loader = DataLoader(
|
||||
data_set,
|
||||
batch_size=batch_size,
|
||||
shuffle=shuffle_flag,
|
||||
num_workers=args.num_workers,
|
||||
drop_last=drop_last)
|
||||
return data_set, data_loader
|
748
data_provider/data_loader.py
Normal file
748
data_provider/data_loader.py
Normal file
@ -0,0 +1,748 @@
|
||||
import os
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import glob
|
||||
import re
|
||||
import torch
|
||||
from torch.utils.data import Dataset, DataLoader
|
||||
from sklearn.preprocessing import StandardScaler
|
||||
from utils.timefeatures import time_features
|
||||
from data_provider.m4 import M4Dataset, M4Meta
|
||||
from data_provider.uea import subsample, interpolate_missing, Normalizer
|
||||
from sktime.datasets import load_from_tsfile_to_dataframe
|
||||
import warnings
|
||||
from utils.augmentation import run_augmentation_single
|
||||
|
||||
warnings.filterwarnings('ignore')
|
||||
|
||||
|
||||
class Dataset_ETT_hour(Dataset):
|
||||
def __init__(self, args, root_path, flag='train', size=None,
|
||||
features='S', data_path='ETTh1.csv',
|
||||
target='OT', scale=True, timeenc=0, freq='h', seasonal_patterns=None):
|
||||
# size [seq_len, label_len, pred_len]
|
||||
self.args = args
|
||||
# info
|
||||
if size == None:
|
||||
self.seq_len = 24 * 4 * 4
|
||||
self.label_len = 24 * 4
|
||||
self.pred_len = 24 * 4
|
||||
else:
|
||||
self.seq_len = size[0]
|
||||
self.label_len = size[1]
|
||||
self.pred_len = size[2]
|
||||
# init
|
||||
assert flag in ['train', 'test', 'val']
|
||||
type_map = {'train': 0, 'val': 1, 'test': 2}
|
||||
self.set_type = type_map[flag]
|
||||
|
||||
self.features = features
|
||||
self.target = target
|
||||
self.scale = scale
|
||||
self.timeenc = timeenc
|
||||
self.freq = freq
|
||||
|
||||
self.root_path = root_path
|
||||
self.data_path = data_path
|
||||
self.__read_data__()
|
||||
|
||||
def __read_data__(self):
|
||||
self.scaler = StandardScaler()
|
||||
df_raw = pd.read_csv(os.path.join(self.root_path,
|
||||
self.data_path))
|
||||
|
||||
border1s = [0, 12 * 30 * 24 - self.seq_len, 12 * 30 * 24 + 4 * 30 * 24 - self.seq_len]
|
||||
border2s = [12 * 30 * 24, 12 * 30 * 24 + 4 * 30 * 24, 12 * 30 * 24 + 8 * 30 * 24]
|
||||
border1 = border1s[self.set_type]
|
||||
border2 = border2s[self.set_type]
|
||||
|
||||
if self.features == 'M' or self.features == 'MS':
|
||||
cols_data = df_raw.columns[1:]
|
||||
df_data = df_raw[cols_data]
|
||||
elif self.features == 'S':
|
||||
df_data = df_raw[[self.target]]
|
||||
|
||||
if self.scale:
|
||||
train_data = df_data[border1s[0]:border2s[0]]
|
||||
self.scaler.fit(train_data.values)
|
||||
data = self.scaler.transform(df_data.values)
|
||||
else:
|
||||
data = df_data.values
|
||||
|
||||
df_stamp = df_raw[['date']][border1:border2]
|
||||
df_stamp['date'] = pd.to_datetime(df_stamp.date)
|
||||
if self.timeenc == 0:
|
||||
df_stamp['month'] = df_stamp.date.apply(lambda row: row.month, 1)
|
||||
df_stamp['day'] = df_stamp.date.apply(lambda row: row.day, 1)
|
||||
df_stamp['weekday'] = df_stamp.date.apply(lambda row: row.weekday(), 1)
|
||||
df_stamp['hour'] = df_stamp.date.apply(lambda row: row.hour, 1)
|
||||
data_stamp = df_stamp.drop(['date'], 1).values
|
||||
elif self.timeenc == 1:
|
||||
data_stamp = time_features(pd.to_datetime(df_stamp['date'].values), freq=self.freq)
|
||||
data_stamp = data_stamp.transpose(1, 0)
|
||||
|
||||
self.data_x = data[border1:border2]
|
||||
self.data_y = data[border1:border2]
|
||||
|
||||
if self.set_type == 0 and self.args.augmentation_ratio > 0:
|
||||
self.data_x, self.data_y, augmentation_tags = run_augmentation_single(self.data_x, self.data_y, self.args)
|
||||
|
||||
self.data_stamp = data_stamp
|
||||
|
||||
def __getitem__(self, index):
|
||||
s_begin = index
|
||||
s_end = s_begin + self.seq_len
|
||||
r_begin = s_end - self.label_len
|
||||
r_end = r_begin + self.label_len + self.pred_len
|
||||
|
||||
seq_x = self.data_x[s_begin:s_end]
|
||||
seq_y = self.data_y[r_begin:r_end]
|
||||
seq_x_mark = self.data_stamp[s_begin:s_end]
|
||||
seq_y_mark = self.data_stamp[r_begin:r_end]
|
||||
|
||||
return seq_x, seq_y, seq_x_mark, seq_y_mark
|
||||
|
||||
def __len__(self):
|
||||
return len(self.data_x) - self.seq_len - self.pred_len + 1
|
||||
|
||||
def inverse_transform(self, data):
|
||||
return self.scaler.inverse_transform(data)
|
||||
|
||||
|
||||
class Dataset_ETT_minute(Dataset):
|
||||
def __init__(self, args, root_path, flag='train', size=None,
|
||||
features='S', data_path='ETTm1.csv',
|
||||
target='OT', scale=True, timeenc=0, freq='t', seasonal_patterns=None):
|
||||
# size [seq_len, label_len, pred_len]
|
||||
self.args = args
|
||||
# info
|
||||
if size == None:
|
||||
self.seq_len = 24 * 4 * 4
|
||||
self.label_len = 24 * 4
|
||||
self.pred_len = 24 * 4
|
||||
else:
|
||||
self.seq_len = size[0]
|
||||
self.label_len = size[1]
|
||||
self.pred_len = size[2]
|
||||
# init
|
||||
assert flag in ['train', 'test', 'val']
|
||||
type_map = {'train': 0, 'val': 1, 'test': 2}
|
||||
self.set_type = type_map[flag]
|
||||
|
||||
self.features = features
|
||||
self.target = target
|
||||
self.scale = scale
|
||||
self.timeenc = timeenc
|
||||
self.freq = freq
|
||||
|
||||
self.root_path = root_path
|
||||
self.data_path = data_path
|
||||
self.__read_data__()
|
||||
|
||||
def __read_data__(self):
|
||||
self.scaler = StandardScaler()
|
||||
df_raw = pd.read_csv(os.path.join(self.root_path,
|
||||
self.data_path))
|
||||
|
||||
border1s = [0, 12 * 30 * 24 * 4 - self.seq_len, 12 * 30 * 24 * 4 + 4 * 30 * 24 * 4 - self.seq_len]
|
||||
border2s = [12 * 30 * 24 * 4, 12 * 30 * 24 * 4 + 4 * 30 * 24 * 4, 12 * 30 * 24 * 4 + 8 * 30 * 24 * 4]
|
||||
border1 = border1s[self.set_type]
|
||||
border2 = border2s[self.set_type]
|
||||
|
||||
if self.features == 'M' or self.features == 'MS':
|
||||
cols_data = df_raw.columns[1:]
|
||||
df_data = df_raw[cols_data]
|
||||
elif self.features == 'S':
|
||||
df_data = df_raw[[self.target]]
|
||||
|
||||
if self.scale:
|
||||
train_data = df_data[border1s[0]:border2s[0]]
|
||||
self.scaler.fit(train_data.values)
|
||||
data = self.scaler.transform(df_data.values)
|
||||
else:
|
||||
data = df_data.values
|
||||
|
||||
df_stamp = df_raw[['date']][border1:border2]
|
||||
df_stamp['date'] = pd.to_datetime(df_stamp.date)
|
||||
if self.timeenc == 0:
|
||||
df_stamp['month'] = df_stamp.date.apply(lambda row: row.month, 1)
|
||||
df_stamp['day'] = df_stamp.date.apply(lambda row: row.day, 1)
|
||||
df_stamp['weekday'] = df_stamp.date.apply(lambda row: row.weekday(), 1)
|
||||
df_stamp['hour'] = df_stamp.date.apply(lambda row: row.hour, 1)
|
||||
df_stamp['minute'] = df_stamp.date.apply(lambda row: row.minute, 1)
|
||||
df_stamp['minute'] = df_stamp.minute.map(lambda x: x // 15)
|
||||
data_stamp = df_stamp.drop(['date'], 1).values
|
||||
elif self.timeenc == 1:
|
||||
data_stamp = time_features(pd.to_datetime(df_stamp['date'].values), freq=self.freq)
|
||||
data_stamp = data_stamp.transpose(1, 0)
|
||||
|
||||
self.data_x = data[border1:border2]
|
||||
self.data_y = data[border1:border2]
|
||||
|
||||
if self.set_type == 0 and self.args.augmentation_ratio > 0:
|
||||
self.data_x, self.data_y, augmentation_tags = run_augmentation_single(self.data_x, self.data_y, self.args)
|
||||
|
||||
self.data_stamp = data_stamp
|
||||
|
||||
def __getitem__(self, index):
|
||||
s_begin = index
|
||||
s_end = s_begin + self.seq_len
|
||||
r_begin = s_end - self.label_len
|
||||
r_end = r_begin + self.label_len + self.pred_len
|
||||
|
||||
seq_x = self.data_x[s_begin:s_end]
|
||||
seq_y = self.data_y[r_begin:r_end]
|
||||
seq_x_mark = self.data_stamp[s_begin:s_end]
|
||||
seq_y_mark = self.data_stamp[r_begin:r_end]
|
||||
|
||||
return seq_x, seq_y, seq_x_mark, seq_y_mark
|
||||
|
||||
def __len__(self):
|
||||
return len(self.data_x) - self.seq_len - self.pred_len + 1
|
||||
|
||||
def inverse_transform(self, data):
|
||||
return self.scaler.inverse_transform(data)
|
||||
|
||||
|
||||
class Dataset_Custom(Dataset):
|
||||
def __init__(self, args, root_path, flag='train', size=None,
|
||||
features='S', data_path='ETTh1.csv',
|
||||
target='OT', scale=True, timeenc=0, freq='h', seasonal_patterns=None):
|
||||
# size [seq_len, label_len, pred_len]
|
||||
self.args = args
|
||||
# info
|
||||
if size == None:
|
||||
self.seq_len = 24 * 4 * 4
|
||||
self.label_len = 24 * 4
|
||||
self.pred_len = 24 * 4
|
||||
else:
|
||||
self.seq_len = size[0]
|
||||
self.label_len = size[1]
|
||||
self.pred_len = size[2]
|
||||
# init
|
||||
assert flag in ['train', 'test', 'val']
|
||||
type_map = {'train': 0, 'val': 1, 'test': 2}
|
||||
self.set_type = type_map[flag]
|
||||
|
||||
self.features = features
|
||||
self.target = target
|
||||
self.scale = scale
|
||||
self.timeenc = timeenc
|
||||
self.freq = freq
|
||||
|
||||
self.root_path = root_path
|
||||
self.data_path = data_path
|
||||
self.__read_data__()
|
||||
|
||||
def __read_data__(self):
|
||||
self.scaler = StandardScaler()
|
||||
df_raw = pd.read_csv(os.path.join(self.root_path,
|
||||
self.data_path))
|
||||
|
||||
'''
|
||||
df_raw.columns: ['date', ...(other features), target feature]
|
||||
'''
|
||||
cols = list(df_raw.columns)
|
||||
cols.remove(self.target)
|
||||
cols.remove('date')
|
||||
df_raw = df_raw[['date'] + cols + [self.target]]
|
||||
num_train = int(len(df_raw) * 0.7)
|
||||
num_test = int(len(df_raw) * 0.2)
|
||||
num_vali = len(df_raw) - num_train - num_test
|
||||
border1s = [0, num_train - self.seq_len, len(df_raw) - num_test - self.seq_len]
|
||||
border2s = [num_train, num_train + num_vali, len(df_raw)]
|
||||
border1 = border1s[self.set_type]
|
||||
border2 = border2s[self.set_type]
|
||||
|
||||
if self.features == 'M' or self.features == 'MS':
|
||||
cols_data = df_raw.columns[1:]
|
||||
df_data = df_raw[cols_data]
|
||||
elif self.features == 'S':
|
||||
df_data = df_raw[[self.target]]
|
||||
|
||||
if self.scale:
|
||||
train_data = df_data[border1s[0]:border2s[0]]
|
||||
self.scaler.fit(train_data.values)
|
||||
data = self.scaler.transform(df_data.values)
|
||||
else:
|
||||
data = df_data.values
|
||||
|
||||
df_stamp = df_raw[['date']][border1:border2]
|
||||
df_stamp['date'] = pd.to_datetime(df_stamp.date)
|
||||
if self.timeenc == 0:
|
||||
df_stamp['month'] = df_stamp.date.apply(lambda row: row.month, 1)
|
||||
df_stamp['day'] = df_stamp.date.apply(lambda row: row.day, 1)
|
||||
df_stamp['weekday'] = df_stamp.date.apply(lambda row: row.weekday(), 1)
|
||||
df_stamp['hour'] = df_stamp.date.apply(lambda row: row.hour, 1)
|
||||
data_stamp = df_stamp.drop(['date'], 1).values
|
||||
elif self.timeenc == 1:
|
||||
data_stamp = time_features(pd.to_datetime(df_stamp['date'].values), freq=self.freq)
|
||||
data_stamp = data_stamp.transpose(1, 0)
|
||||
|
||||
self.data_x = data[border1:border2]
|
||||
self.data_y = data[border1:border2]
|
||||
|
||||
if self.set_type == 0 and self.args.augmentation_ratio > 0:
|
||||
self.data_x, self.data_y, augmentation_tags = run_augmentation_single(self.data_x, self.data_y, self.args)
|
||||
|
||||
self.data_stamp = data_stamp
|
||||
|
||||
def __getitem__(self, index):
|
||||
s_begin = index
|
||||
s_end = s_begin + self.seq_len
|
||||
r_begin = s_end - self.label_len
|
||||
r_end = r_begin + self.label_len + self.pred_len
|
||||
|
||||
seq_x = self.data_x[s_begin:s_end]
|
||||
seq_y = self.data_y[r_begin:r_end]
|
||||
seq_x_mark = self.data_stamp[s_begin:s_end]
|
||||
seq_y_mark = self.data_stamp[r_begin:r_end]
|
||||
|
||||
return seq_x, seq_y, seq_x_mark, seq_y_mark
|
||||
|
||||
def __len__(self):
|
||||
return len(self.data_x) - self.seq_len - self.pred_len + 1
|
||||
|
||||
def inverse_transform(self, data):
|
||||
return self.scaler.inverse_transform(data)
|
||||
|
||||
|
||||
class Dataset_M4(Dataset):
|
||||
def __init__(self, args, root_path, flag='pred', size=None,
|
||||
features='S', data_path='ETTh1.csv',
|
||||
target='OT', scale=False, inverse=False, timeenc=0, freq='15min',
|
||||
seasonal_patterns='Yearly'):
|
||||
# size [seq_len, label_len, pred_len]
|
||||
# init
|
||||
self.features = features
|
||||
self.target = target
|
||||
self.scale = scale
|
||||
self.inverse = inverse
|
||||
self.timeenc = timeenc
|
||||
self.root_path = root_path
|
||||
|
||||
self.seq_len = size[0]
|
||||
self.label_len = size[1]
|
||||
self.pred_len = size[2]
|
||||
|
||||
self.seasonal_patterns = seasonal_patterns
|
||||
self.history_size = M4Meta.history_size[seasonal_patterns]
|
||||
self.window_sampling_limit = int(self.history_size * self.pred_len)
|
||||
self.flag = flag
|
||||
|
||||
self.__read_data__()
|
||||
|
||||
def __read_data__(self):
|
||||
# M4Dataset.initialize()
|
||||
if self.flag == 'train':
|
||||
dataset = M4Dataset.load(training=True, dataset_file=self.root_path)
|
||||
else:
|
||||
dataset = M4Dataset.load(training=False, dataset_file=self.root_path)
|
||||
training_values = np.array(
|
||||
[v[~np.isnan(v)] for v in
|
||||
dataset.values[dataset.groups == self.seasonal_patterns]]) # split different frequencies
|
||||
self.ids = np.array([i for i in dataset.ids[dataset.groups == self.seasonal_patterns]])
|
||||
self.timeseries = [ts for ts in training_values]
|
||||
|
||||
def __getitem__(self, index):
|
||||
insample = np.zeros((self.seq_len, 1))
|
||||
insample_mask = np.zeros((self.seq_len, 1))
|
||||
outsample = np.zeros((self.pred_len + self.label_len, 1))
|
||||
outsample_mask = np.zeros((self.pred_len + self.label_len, 1)) # m4 dataset
|
||||
|
||||
sampled_timeseries = self.timeseries[index]
|
||||
cut_point = np.random.randint(low=max(1, len(sampled_timeseries) - self.window_sampling_limit),
|
||||
high=len(sampled_timeseries),
|
||||
size=1)[0]
|
||||
|
||||
insample_window = sampled_timeseries[max(0, cut_point - self.seq_len):cut_point]
|
||||
insample[-len(insample_window):, 0] = insample_window
|
||||
insample_mask[-len(insample_window):, 0] = 1.0
|
||||
outsample_window = sampled_timeseries[
|
||||
max(0, cut_point - self.label_len):min(len(sampled_timeseries), cut_point + self.pred_len)]
|
||||
outsample[:len(outsample_window), 0] = outsample_window
|
||||
outsample_mask[:len(outsample_window), 0] = 1.0
|
||||
return insample, outsample, insample_mask, outsample_mask
|
||||
|
||||
def __len__(self):
|
||||
return len(self.timeseries)
|
||||
|
||||
def inverse_transform(self, data):
|
||||
return self.scaler.inverse_transform(data)
|
||||
|
||||
def last_insample_window(self):
|
||||
"""
|
||||
The last window of insample size of all timeseries.
|
||||
This function does not support batching and does not reshuffle timeseries.
|
||||
|
||||
:return: Last insample window of all timeseries. Shape "timeseries, insample size"
|
||||
"""
|
||||
insample = np.zeros((len(self.timeseries), self.seq_len))
|
||||
insample_mask = np.zeros((len(self.timeseries), self.seq_len))
|
||||
for i, ts in enumerate(self.timeseries):
|
||||
ts_last_window = ts[-self.seq_len:]
|
||||
insample[i, -len(ts):] = ts_last_window
|
||||
insample_mask[i, -len(ts):] = 1.0
|
||||
return insample, insample_mask
|
||||
|
||||
|
||||
class PSMSegLoader(Dataset):
|
||||
def __init__(self, args, root_path, win_size, step=1, flag="train"):
|
||||
self.flag = flag
|
||||
self.step = step
|
||||
self.win_size = win_size
|
||||
self.scaler = StandardScaler()
|
||||
data = pd.read_csv(os.path.join(root_path, 'train.csv'))
|
||||
data = data.values[:, 1:]
|
||||
data = np.nan_to_num(data)
|
||||
self.scaler.fit(data)
|
||||
data = self.scaler.transform(data)
|
||||
test_data = pd.read_csv(os.path.join(root_path, 'test.csv'))
|
||||
test_data = test_data.values[:, 1:]
|
||||
test_data = np.nan_to_num(test_data)
|
||||
self.test = self.scaler.transform(test_data)
|
||||
self.train = data
|
||||
data_len = len(self.train)
|
||||
self.val = self.train[(int)(data_len * 0.8):]
|
||||
self.test_labels = pd.read_csv(os.path.join(root_path, 'test_label.csv')).values[:, 1:]
|
||||
print("test:", self.test.shape)
|
||||
print("train:", self.train.shape)
|
||||
|
||||
def __len__(self):
|
||||
if self.flag == "train":
|
||||
return (self.train.shape[0] - self.win_size) // self.step + 1
|
||||
elif (self.flag == 'val'):
|
||||
return (self.val.shape[0] - self.win_size) // self.step + 1
|
||||
elif (self.flag == 'test'):
|
||||
return (self.test.shape[0] - self.win_size) // self.step + 1
|
||||
else:
|
||||
return (self.test.shape[0] - self.win_size) // self.win_size + 1
|
||||
|
||||
def __getitem__(self, index):
|
||||
index = index * self.step
|
||||
if self.flag == "train":
|
||||
return np.float32(self.train[index:index + self.win_size]), np.float32(self.test_labels[0:self.win_size])
|
||||
elif (self.flag == 'val'):
|
||||
return np.float32(self.val[index:index + self.win_size]), np.float32(self.test_labels[0:self.win_size])
|
||||
elif (self.flag == 'test'):
|
||||
return np.float32(self.test[index:index + self.win_size]), np.float32(
|
||||
self.test_labels[index:index + self.win_size])
|
||||
else:
|
||||
return np.float32(self.test[
|
||||
index // self.step * self.win_size:index // self.step * self.win_size + self.win_size]), np.float32(
|
||||
self.test_labels[index // self.step * self.win_size:index // self.step * self.win_size + self.win_size])
|
||||
|
||||
|
||||
class MSLSegLoader(Dataset):
|
||||
def __init__(self, args, root_path, win_size, step=1, flag="train"):
|
||||
self.flag = flag
|
||||
self.step = step
|
||||
self.win_size = win_size
|
||||
self.scaler = StandardScaler()
|
||||
data = np.load(os.path.join(root_path, "MSL_train.npy"))
|
||||
self.scaler.fit(data)
|
||||
data = self.scaler.transform(data)
|
||||
test_data = np.load(os.path.join(root_path, "MSL_test.npy"))
|
||||
self.test = self.scaler.transform(test_data)
|
||||
self.train = data
|
||||
data_len = len(self.train)
|
||||
self.val = self.train[(int)(data_len * 0.8):]
|
||||
self.test_labels = np.load(os.path.join(root_path, "MSL_test_label.npy"))
|
||||
print("test:", self.test.shape)
|
||||
print("train:", self.train.shape)
|
||||
|
||||
def __len__(self):
|
||||
if self.flag == "train":
|
||||
return (self.train.shape[0] - self.win_size) // self.step + 1
|
||||
elif (self.flag == 'val'):
|
||||
return (self.val.shape[0] - self.win_size) // self.step + 1
|
||||
elif (self.flag == 'test'):
|
||||
return (self.test.shape[0] - self.win_size) // self.step + 1
|
||||
else:
|
||||
return (self.test.shape[0] - self.win_size) // self.win_size + 1
|
||||
|
||||
def __getitem__(self, index):
|
||||
index = index * self.step
|
||||
if self.flag == "train":
|
||||
return np.float32(self.train[index:index + self.win_size]), np.float32(self.test_labels[0:self.win_size])
|
||||
elif (self.flag == 'val'):
|
||||
return np.float32(self.val[index:index + self.win_size]), np.float32(self.test_labels[0:self.win_size])
|
||||
elif (self.flag == 'test'):
|
||||
return np.float32(self.test[index:index + self.win_size]), np.float32(
|
||||
self.test_labels[index:index + self.win_size])
|
||||
else:
|
||||
return np.float32(self.test[
|
||||
index // self.step * self.win_size:index // self.step * self.win_size + self.win_size]), np.float32(
|
||||
self.test_labels[index // self.step * self.win_size:index // self.step * self.win_size + self.win_size])
|
||||
|
||||
|
||||
class SMAPSegLoader(Dataset):
|
||||
def __init__(self, args, root_path, win_size, step=1, flag="train"):
|
||||
self.flag = flag
|
||||
self.step = step
|
||||
self.win_size = win_size
|
||||
self.scaler = StandardScaler()
|
||||
data = np.load(os.path.join(root_path, "SMAP_train.npy"))
|
||||
self.scaler.fit(data)
|
||||
data = self.scaler.transform(data)
|
||||
test_data = np.load(os.path.join(root_path, "SMAP_test.npy"))
|
||||
self.test = self.scaler.transform(test_data)
|
||||
self.train = data
|
||||
data_len = len(self.train)
|
||||
self.val = self.train[(int)(data_len * 0.8):]
|
||||
self.test_labels = np.load(os.path.join(root_path, "SMAP_test_label.npy"))
|
||||
print("test:", self.test.shape)
|
||||
print("train:", self.train.shape)
|
||||
|
||||
def __len__(self):
|
||||
|
||||
if self.flag == "train":
|
||||
return (self.train.shape[0] - self.win_size) // self.step + 1
|
||||
elif (self.flag == 'val'):
|
||||
return (self.val.shape[0] - self.win_size) // self.step + 1
|
||||
elif (self.flag == 'test'):
|
||||
return (self.test.shape[0] - self.win_size) // self.step + 1
|
||||
else:
|
||||
return (self.test.shape[0] - self.win_size) // self.win_size + 1
|
||||
|
||||
def __getitem__(self, index):
|
||||
index = index * self.step
|
||||
if self.flag == "train":
|
||||
return np.float32(self.train[index:index + self.win_size]), np.float32(self.test_labels[0:self.win_size])
|
||||
elif (self.flag == 'val'):
|
||||
return np.float32(self.val[index:index + self.win_size]), np.float32(self.test_labels[0:self.win_size])
|
||||
elif (self.flag == 'test'):
|
||||
return np.float32(self.test[index:index + self.win_size]), np.float32(
|
||||
self.test_labels[index:index + self.win_size])
|
||||
else:
|
||||
return np.float32(self.test[
|
||||
index // self.step * self.win_size:index // self.step * self.win_size + self.win_size]), np.float32(
|
||||
self.test_labels[index // self.step * self.win_size:index // self.step * self.win_size + self.win_size])
|
||||
|
||||
|
||||
class SMDSegLoader(Dataset):
|
||||
def __init__(self, args, root_path, win_size, step=100, flag="train"):
|
||||
self.flag = flag
|
||||
self.step = step
|
||||
self.win_size = win_size
|
||||
self.scaler = StandardScaler()
|
||||
data = np.load(os.path.join(root_path, "SMD_train.npy"))
|
||||
self.scaler.fit(data)
|
||||
data = self.scaler.transform(data)
|
||||
test_data = np.load(os.path.join(root_path, "SMD_test.npy"))
|
||||
self.test = self.scaler.transform(test_data)
|
||||
self.train = data
|
||||
data_len = len(self.train)
|
||||
self.val = self.train[(int)(data_len * 0.8):]
|
||||
self.test_labels = np.load(os.path.join(root_path, "SMD_test_label.npy"))
|
||||
|
||||
def __len__(self):
|
||||
if self.flag == "train":
|
||||
return (self.train.shape[0] - self.win_size) // self.step + 1
|
||||
elif (self.flag == 'val'):
|
||||
return (self.val.shape[0] - self.win_size) // self.step + 1
|
||||
elif (self.flag == 'test'):
|
||||
return (self.test.shape[0] - self.win_size) // self.step + 1
|
||||
else:
|
||||
return (self.test.shape[0] - self.win_size) // self.win_size + 1
|
||||
|
||||
def __getitem__(self, index):
|
||||
index = index * self.step
|
||||
if self.flag == "train":
|
||||
return np.float32(self.train[index:index + self.win_size]), np.float32(self.test_labels[0:self.win_size])
|
||||
elif (self.flag == 'val'):
|
||||
return np.float32(self.val[index:index + self.win_size]), np.float32(self.test_labels[0:self.win_size])
|
||||
elif (self.flag == 'test'):
|
||||
return np.float32(self.test[index:index + self.win_size]), np.float32(
|
||||
self.test_labels[index:index + self.win_size])
|
||||
else:
|
||||
return np.float32(self.test[
|
||||
index // self.step * self.win_size:index // self.step * self.win_size + self.win_size]), np.float32(
|
||||
self.test_labels[index // self.step * self.win_size:index // self.step * self.win_size + self.win_size])
|
||||
|
||||
|
||||
class SWATSegLoader(Dataset):
|
||||
def __init__(self, args, root_path, win_size, step=1, flag="train"):
|
||||
self.flag = flag
|
||||
self.step = step
|
||||
self.win_size = win_size
|
||||
self.scaler = StandardScaler()
|
||||
|
||||
train_data = pd.read_csv(os.path.join(root_path, 'swat_train2.csv'))
|
||||
test_data = pd.read_csv(os.path.join(root_path, 'swat2.csv'))
|
||||
labels = test_data.values[:, -1:]
|
||||
train_data = train_data.values[:, :-1]
|
||||
test_data = test_data.values[:, :-1]
|
||||
|
||||
self.scaler.fit(train_data)
|
||||
train_data = self.scaler.transform(train_data)
|
||||
test_data = self.scaler.transform(test_data)
|
||||
self.train = train_data
|
||||
self.test = test_data
|
||||
data_len = len(self.train)
|
||||
self.val = self.train[(int)(data_len * 0.8):]
|
||||
self.test_labels = labels
|
||||
print("test:", self.test.shape)
|
||||
print("train:", self.train.shape)
|
||||
|
||||
def __len__(self):
|
||||
"""
|
||||
Number of images in the object dataset.
|
||||
"""
|
||||
if self.flag == "train":
|
||||
return (self.train.shape[0] - self.win_size) // self.step + 1
|
||||
elif (self.flag == 'val'):
|
||||
return (self.val.shape[0] - self.win_size) // self.step + 1
|
||||
elif (self.flag == 'test'):
|
||||
return (self.test.shape[0] - self.win_size) // self.step + 1
|
||||
else:
|
||||
return (self.test.shape[0] - self.win_size) // self.win_size + 1
|
||||
|
||||
def __getitem__(self, index):
|
||||
index = index * self.step
|
||||
if self.flag == "train":
|
||||
return np.float32(self.train[index:index + self.win_size]), np.float32(self.test_labels[0:self.win_size])
|
||||
elif (self.flag == 'val'):
|
||||
return np.float32(self.val[index:index + self.win_size]), np.float32(self.test_labels[0:self.win_size])
|
||||
elif (self.flag == 'test'):
|
||||
return np.float32(self.test[index:index + self.win_size]), np.float32(
|
||||
self.test_labels[index:index + self.win_size])
|
||||
else:
|
||||
return np.float32(self.test[
|
||||
index // self.step * self.win_size:index // self.step * self.win_size + self.win_size]), np.float32(
|
||||
self.test_labels[index // self.step * self.win_size:index // self.step * self.win_size + self.win_size])
|
||||
|
||||
|
||||
class UEAloader(Dataset):
|
||||
"""
|
||||
Dataset class for datasets included in:
|
||||
Time Series Classification Archive (www.timeseriesclassification.com)
|
||||
Argument:
|
||||
limit_size: float in (0, 1) for debug
|
||||
Attributes:
|
||||
all_df: (num_samples * seq_len, num_columns) dataframe indexed by integer indices, with multiple rows corresponding to the same index (sample).
|
||||
Each row is a time step; Each column contains either metadata (e.g. timestamp) or a feature.
|
||||
feature_df: (num_samples * seq_len, feat_dim) dataframe; contains the subset of columns of `all_df` which correspond to selected features
|
||||
feature_names: names of columns contained in `feature_df` (same as feature_df.columns)
|
||||
all_IDs: (num_samples,) series of IDs contained in `all_df`/`feature_df` (same as all_df.index.unique() )
|
||||
labels_df: (num_samples, num_labels) pd.DataFrame of label(s) for each sample
|
||||
max_seq_len: maximum sequence (time series) length. If None, script argument `max_seq_len` will be used.
|
||||
(Moreover, script argument overrides this attribute)
|
||||
"""
|
||||
|
||||
def __init__(self, args, root_path, file_list=None, limit_size=None, flag=None):
|
||||
self.args = args
|
||||
self.root_path = root_path
|
||||
self.flag = flag
|
||||
self.all_df, self.labels_df = self.load_all(root_path, file_list=file_list, flag=flag)
|
||||
self.all_IDs = self.all_df.index.unique() # all sample IDs (integer indices 0 ... num_samples-1)
|
||||
|
||||
if limit_size is not None:
|
||||
if limit_size > 1:
|
||||
limit_size = int(limit_size)
|
||||
else: # interpret as proportion if in (0, 1]
|
||||
limit_size = int(limit_size * len(self.all_IDs))
|
||||
self.all_IDs = self.all_IDs[:limit_size]
|
||||
self.all_df = self.all_df.loc[self.all_IDs]
|
||||
|
||||
# use all features
|
||||
self.feature_names = self.all_df.columns
|
||||
self.feature_df = self.all_df
|
||||
|
||||
# pre_process
|
||||
normalizer = Normalizer()
|
||||
self.feature_df = normalizer.normalize(self.feature_df)
|
||||
print(len(self.all_IDs))
|
||||
|
||||
def load_all(self, root_path, file_list=None, flag=None):
|
||||
"""
|
||||
Loads datasets from ts files contained in `root_path` into a dataframe, optionally choosing from `pattern`
|
||||
Args:
|
||||
root_path: directory containing all individual .ts files
|
||||
file_list: optionally, provide a list of file paths within `root_path` to consider.
|
||||
Otherwise, entire `root_path` contents will be used.
|
||||
Returns:
|
||||
all_df: a single (possibly concatenated) dataframe with all data corresponding to specified files
|
||||
labels_df: dataframe containing label(s) for each sample
|
||||
"""
|
||||
# Select paths for training and evaluation
|
||||
if file_list is None:
|
||||
data_paths = glob.glob(os.path.join(root_path, '*')) # list of all paths
|
||||
else:
|
||||
data_paths = [os.path.join(root_path, p) for p in file_list]
|
||||
if len(data_paths) == 0:
|
||||
raise Exception('No files found using: {}'.format(os.path.join(root_path, '*')))
|
||||
if flag is not None:
|
||||
data_paths = list(filter(lambda x: re.search(flag, x), data_paths))
|
||||
input_paths = [p for p in data_paths if os.path.isfile(p) and p.endswith('.ts')]
|
||||
if len(input_paths) == 0:
|
||||
pattern='*.ts'
|
||||
raise Exception("No .ts files found using pattern: '{}'".format(pattern))
|
||||
|
||||
all_df, labels_df = self.load_single(input_paths[0]) # a single file contains dataset
|
||||
|
||||
return all_df, labels_df
|
||||
|
||||
def load_single(self, filepath):
|
||||
df, labels = load_from_tsfile_to_dataframe(filepath, return_separate_X_and_y=True,
|
||||
replace_missing_vals_with='NaN')
|
||||
labels = pd.Series(labels, dtype="category")
|
||||
self.class_names = labels.cat.categories
|
||||
labels_df = pd.DataFrame(labels.cat.codes,
|
||||
dtype=np.int8) # int8-32 gives an error when using nn.CrossEntropyLoss
|
||||
|
||||
lengths = df.applymap(
|
||||
lambda x: len(x)).values # (num_samples, num_dimensions) array containing the length of each series
|
||||
|
||||
horiz_diffs = np.abs(lengths - np.expand_dims(lengths[:, 0], -1))
|
||||
|
||||
if np.sum(horiz_diffs) > 0: # if any row (sample) has varying length across dimensions
|
||||
df = df.applymap(subsample)
|
||||
|
||||
lengths = df.applymap(lambda x: len(x)).values
|
||||
vert_diffs = np.abs(lengths - np.expand_dims(lengths[0, :], 0))
|
||||
if np.sum(vert_diffs) > 0: # if any column (dimension) has varying length across samples
|
||||
self.max_seq_len = int(np.max(lengths[:, 0]))
|
||||
else:
|
||||
self.max_seq_len = lengths[0, 0]
|
||||
|
||||
# First create a (seq_len, feat_dim) dataframe for each sample, indexed by a single integer ("ID" of the sample)
|
||||
# Then concatenate into a (num_samples * seq_len, feat_dim) dataframe, with multiple rows corresponding to the
|
||||
# sample index (i.e. the same scheme as all datasets in this project)
|
||||
|
||||
df = pd.concat((pd.DataFrame({col: df.loc[row, col] for col in df.columns}).reset_index(drop=True).set_index(
|
||||
pd.Series(lengths[row, 0] * [row])) for row in range(df.shape[0])), axis=0)
|
||||
|
||||
# Replace NaN values
|
||||
grp = df.groupby(by=df.index)
|
||||
df = grp.transform(interpolate_missing)
|
||||
|
||||
return df, labels_df
|
||||
|
||||
def instance_norm(self, case):
|
||||
if self.root_path.count('EthanolConcentration') > 0: # special process for numerical stability
|
||||
mean = case.mean(0, keepdim=True)
|
||||
case = case - mean
|
||||
stdev = torch.sqrt(torch.var(case, dim=1, keepdim=True, unbiased=False) + 1e-5)
|
||||
case /= stdev
|
||||
return case
|
||||
else:
|
||||
return case
|
||||
|
||||
def __getitem__(self, ind):
|
||||
batch_x = self.feature_df.loc[self.all_IDs[ind]].values
|
||||
labels = self.labels_df.loc[self.all_IDs[ind]].values
|
||||
if self.flag == "TRAIN" and self.args.augmentation_ratio > 0:
|
||||
num_samples = len(self.all_IDs)
|
||||
num_columns = self.feature_df.shape[1]
|
||||
seq_len = int(self.feature_df.shape[0] / num_samples)
|
||||
batch_x = batch_x.reshape((1, seq_len, num_columns))
|
||||
batch_x, labels, augmentation_tags = run_augmentation_single(batch_x, labels, self.args)
|
||||
|
||||
batch_x = batch_x.reshape((1 * seq_len, num_columns))
|
||||
|
||||
return self.instance_norm(torch.from_numpy(batch_x)), \
|
||||
torch.from_numpy(labels)
|
||||
|
||||
def __len__(self):
|
||||
return len(self.all_IDs)
|
138
data_provider/m4.py
Normal file
138
data_provider/m4.py
Normal file
@ -0,0 +1,138 @@
|
||||
# This source code is provided for the purposes of scientific reproducibility
|
||||
# under the following limited license from Element AI Inc. The code is an
|
||||
# implementation of the N-BEATS model (Oreshkin et al., N-BEATS: Neural basis
|
||||
# expansion analysis for interpretable time series forecasting,
|
||||
# https://arxiv.org/abs/1905.10437). The copyright to the source code is
|
||||
# licensed under the Creative Commons - Attribution-NonCommercial 4.0
|
||||
# International license (CC BY-NC 4.0):
|
||||
# https://creativecommons.org/licenses/by-nc/4.0/. Any commercial use (whether
|
||||
# for the benefit of third parties or internally in production) requires an
|
||||
# explicit license. The subject-matter of the N-BEATS model and associated
|
||||
# materials are the property of Element AI Inc. and may be subject to patent
|
||||
# protection. No license to patents is granted hereunder (whether express or
|
||||
# implied). Copyright © 2020 Element AI Inc. All rights reserved.
|
||||
|
||||
"""
|
||||
M4 Dataset
|
||||
"""
|
||||
import logging
|
||||
import os
|
||||
from collections import OrderedDict
|
||||
from dataclasses import dataclass
|
||||
from glob import glob
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import patoolib
|
||||
from tqdm import tqdm
|
||||
import logging
|
||||
import os
|
||||
import pathlib
|
||||
import sys
|
||||
from urllib import request
|
||||
|
||||
|
||||
def url_file_name(url: str) -> str:
|
||||
"""
|
||||
Extract file name from url.
|
||||
|
||||
:param url: URL to extract file name from.
|
||||
:return: File name.
|
||||
"""
|
||||
return url.split('/')[-1] if len(url) > 0 else ''
|
||||
|
||||
|
||||
def download(url: str, file_path: str) -> None:
|
||||
"""
|
||||
Download a file to the given path.
|
||||
|
||||
:param url: URL to download
|
||||
:param file_path: Where to download the content.
|
||||
"""
|
||||
|
||||
def progress(count, block_size, total_size):
|
||||
progress_pct = float(count * block_size) / float(total_size) * 100.0
|
||||
sys.stdout.write('\rDownloading {} to {} {:.1f}%'.format(url, file_path, progress_pct))
|
||||
sys.stdout.flush()
|
||||
|
||||
if not os.path.isfile(file_path):
|
||||
opener = request.build_opener()
|
||||
opener.addheaders = [('User-agent', 'Mozilla/5.0')]
|
||||
request.install_opener(opener)
|
||||
pathlib.Path(os.path.dirname(file_path)).mkdir(parents=True, exist_ok=True)
|
||||
f, _ = request.urlretrieve(url, file_path, progress)
|
||||
sys.stdout.write('\n')
|
||||
sys.stdout.flush()
|
||||
file_info = os.stat(f)
|
||||
logging.info(f'Successfully downloaded {os.path.basename(file_path)} {file_info.st_size} bytes.')
|
||||
else:
|
||||
file_info = os.stat(file_path)
|
||||
logging.info(f'File already exists: {file_path} {file_info.st_size} bytes.')
|
||||
|
||||
|
||||
@dataclass()
|
||||
class M4Dataset:
|
||||
ids: np.ndarray
|
||||
groups: np.ndarray
|
||||
frequencies: np.ndarray
|
||||
horizons: np.ndarray
|
||||
values: np.ndarray
|
||||
|
||||
@staticmethod
|
||||
def load(training: bool = True, dataset_file: str = '../dataset/m4') -> 'M4Dataset':
|
||||
"""
|
||||
Load cached dataset.
|
||||
|
||||
:param training: Load training part if training is True, test part otherwise.
|
||||
"""
|
||||
info_file = os.path.join(dataset_file, 'M4-info.csv')
|
||||
train_cache_file = os.path.join(dataset_file, 'training.npz')
|
||||
test_cache_file = os.path.join(dataset_file, 'test.npz')
|
||||
m4_info = pd.read_csv(info_file)
|
||||
return M4Dataset(ids=m4_info.M4id.values,
|
||||
groups=m4_info.SP.values,
|
||||
frequencies=m4_info.Frequency.values,
|
||||
horizons=m4_info.Horizon.values,
|
||||
values=np.load(
|
||||
train_cache_file if training else test_cache_file,
|
||||
allow_pickle=True))
|
||||
|
||||
|
||||
@dataclass()
|
||||
class M4Meta:
|
||||
seasonal_patterns = ['Yearly', 'Quarterly', 'Monthly', 'Weekly', 'Daily', 'Hourly']
|
||||
horizons = [6, 8, 18, 13, 14, 48]
|
||||
frequencies = [1, 4, 12, 1, 1, 24]
|
||||
horizons_map = {
|
||||
'Yearly': 6,
|
||||
'Quarterly': 8,
|
||||
'Monthly': 18,
|
||||
'Weekly': 13,
|
||||
'Daily': 14,
|
||||
'Hourly': 48
|
||||
} # different predict length
|
||||
frequency_map = {
|
||||
'Yearly': 1,
|
||||
'Quarterly': 4,
|
||||
'Monthly': 12,
|
||||
'Weekly': 1,
|
||||
'Daily': 1,
|
||||
'Hourly': 24
|
||||
}
|
||||
history_size = {
|
||||
'Yearly': 1.5,
|
||||
'Quarterly': 1.5,
|
||||
'Monthly': 1.5,
|
||||
'Weekly': 10,
|
||||
'Daily': 10,
|
||||
'Hourly': 10
|
||||
} # from interpretable.gin
|
||||
|
||||
|
||||
def load_m4_info() -> pd.DataFrame:
|
||||
"""
|
||||
Load M4Info file.
|
||||
|
||||
:return: Pandas DataFrame of M4Info.
|
||||
"""
|
||||
return pd.read_csv(INFO_FILE_PATH)
|
125
data_provider/uea.py
Normal file
125
data_provider/uea.py
Normal file
@ -0,0 +1,125 @@
|
||||
import os
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import torch
|
||||
|
||||
|
||||
def collate_fn(data, max_len=None):
|
||||
"""Build mini-batch tensors from a list of (X, mask) tuples. Mask input. Create
|
||||
Args:
|
||||
data: len(batch_size) list of tuples (X, y).
|
||||
- X: torch tensor of shape (seq_length, feat_dim); variable seq_length.
|
||||
- y: torch tensor of shape (num_labels,) : class indices or numerical targets
|
||||
(for classification or regression, respectively). num_labels > 1 for multi-task models
|
||||
max_len: global fixed sequence length. Used for architectures requiring fixed length input,
|
||||
where the batch length cannot vary dynamically. Longer sequences are clipped, shorter are padded with 0s
|
||||
Returns:
|
||||
X: (batch_size, padded_length, feat_dim) torch tensor of masked features (input)
|
||||
targets: (batch_size, padded_length, feat_dim) torch tensor of unmasked features (output)
|
||||
target_masks: (batch_size, padded_length, feat_dim) boolean torch tensor
|
||||
0 indicates masked values to be predicted, 1 indicates unaffected/"active" feature values
|
||||
padding_masks: (batch_size, padded_length) boolean tensor, 1 means keep vector at this position, 0 means padding
|
||||
"""
|
||||
|
||||
batch_size = len(data)
|
||||
features, labels = zip(*data)
|
||||
|
||||
# Stack and pad features and masks (convert 2D to 3D tensors, i.e. add batch dimension)
|
||||
lengths = [X.shape[0] for X in features] # original sequence length for each time series
|
||||
if max_len is None:
|
||||
max_len = max(lengths)
|
||||
|
||||
X = torch.zeros(batch_size, max_len, features[0].shape[-1]) # (batch_size, padded_length, feat_dim)
|
||||
for i in range(batch_size):
|
||||
end = min(lengths[i], max_len)
|
||||
X[i, :end, :] = features[i][:end, :]
|
||||
|
||||
targets = torch.stack(labels, dim=0) # (batch_size, num_labels)
|
||||
|
||||
padding_masks = padding_mask(torch.tensor(lengths, dtype=torch.int16),
|
||||
max_len=max_len) # (batch_size, padded_length) boolean tensor, "1" means keep
|
||||
|
||||
return X, targets, padding_masks
|
||||
|
||||
|
||||
def padding_mask(lengths, max_len=None):
|
||||
"""
|
||||
Used to mask padded positions: creates a (batch_size, max_len) boolean mask from a tensor of sequence lengths,
|
||||
where 1 means keep element at this position (time step)
|
||||
"""
|
||||
batch_size = lengths.numel()
|
||||
max_len = max_len or lengths.max_val() # trick works because of overloading of 'or' operator for non-boolean types
|
||||
return (torch.arange(0, max_len, device=lengths.device)
|
||||
.type_as(lengths)
|
||||
.repeat(batch_size, 1)
|
||||
.lt(lengths.unsqueeze(1)))
|
||||
|
||||
|
||||
class Normalizer(object):
|
||||
"""
|
||||
Normalizes dataframe across ALL contained rows (time steps). Different from per-sample normalization.
|
||||
"""
|
||||
|
||||
def __init__(self, norm_type='standardization', mean=None, std=None, min_val=None, max_val=None):
|
||||
"""
|
||||
Args:
|
||||
norm_type: choose from:
|
||||
"standardization", "minmax": normalizes dataframe across ALL contained rows (time steps)
|
||||
"per_sample_std", "per_sample_minmax": normalizes each sample separately (i.e. across only its own rows)
|
||||
mean, std, min_val, max_val: optional (num_feat,) Series of pre-computed values
|
||||
"""
|
||||
|
||||
self.norm_type = norm_type
|
||||
self.mean = mean
|
||||
self.std = std
|
||||
self.min_val = min_val
|
||||
self.max_val = max_val
|
||||
|
||||
def normalize(self, df):
|
||||
"""
|
||||
Args:
|
||||
df: input dataframe
|
||||
Returns:
|
||||
df: normalized dataframe
|
||||
"""
|
||||
if self.norm_type == "standardization":
|
||||
if self.mean is None:
|
||||
self.mean = df.mean()
|
||||
self.std = df.std()
|
||||
return (df - self.mean) / (self.std + np.finfo(float).eps)
|
||||
|
||||
elif self.norm_type == "minmax":
|
||||
if self.max_val is None:
|
||||
self.max_val = df.max()
|
||||
self.min_val = df.min()
|
||||
return (df - self.min_val) / (self.max_val - self.min_val + np.finfo(float).eps)
|
||||
|
||||
elif self.norm_type == "per_sample_std":
|
||||
grouped = df.groupby(by=df.index)
|
||||
return (df - grouped.transform('mean')) / grouped.transform('std')
|
||||
|
||||
elif self.norm_type == "per_sample_minmax":
|
||||
grouped = df.groupby(by=df.index)
|
||||
min_vals = grouped.transform('min')
|
||||
return (df - min_vals) / (grouped.transform('max') - min_vals + np.finfo(float).eps)
|
||||
|
||||
else:
|
||||
raise (NameError(f'Normalize method "{self.norm_type}" not implemented'))
|
||||
|
||||
|
||||
def interpolate_missing(y):
|
||||
"""
|
||||
Replaces NaN values in pd.Series `y` using linear interpolation
|
||||
"""
|
||||
if y.isna().any():
|
||||
y = y.interpolate(method='linear', limit_direction='both')
|
||||
return y
|
||||
|
||||
|
||||
def subsample(y, limit=256, factor=2):
|
||||
"""
|
||||
If a given Series is longer than `limit`, returns subsampled sequence by the specified integer factor
|
||||
"""
|
||||
if len(y) > limit:
|
||||
return y[::factor].reset_index(drop=True)
|
||||
return y
|
Reference in New Issue
Block a user