feat(mambaseries): allow stacking multiple Mamba2 layers

This commit is contained in:
gameloader
2025-09-10 20:56:24 +08:00
parent ff987da4c6
commit 9787badd25

View File

@ -8,7 +8,7 @@ class Mamba2Encoder(nn.Module):
使用 Mamba2 对 patch 维度进行序列建模: 使用 Mamba2 对 patch 维度进行序列建模:
输入: [bs, nvars, patch_num, patch_len] 输入: [bs, nvars, patch_num, patch_len]
映射: patch_len -> d_model 映射: patch_len -> d_model
建模: 在 patch_num 维度上用 Mamba2 建模: 在 patch_num 维度上用 Mamba2(可堆叠多层)
输出: [bs, nvars, d_model] (仅返回 Mamba 输出的最后一个时间步) 输出: [bs, nvars, d_model] (仅返回 Mamba 输出的最后一个时间步)
""" """
def __init__( def __init__(
@ -22,23 +22,29 @@ class Mamba2Encoder(nn.Module):
d_conv=4, d_conv=4,
expand=2, expand=2,
headdim=64, headdim=64,
# 堆叠层数
n_layers=1,
): ):
super().__init__() super().__init__()
self.patch_num = patch_num self.patch_num = patch_num
self.patch_len = patch_len self.patch_len = patch_len
self.d_model = d_model self.d_model = d_model
self.n_layers = n_layers
# 将 patch_len 投影到 d_model # 将 patch_len 投影到 d_model
self.W_P = nn.Linear(patch_len, d_model) # 映射 patch_len -> d_model self.W_P = nn.Linear(patch_len, d_model) # 映射 patch_len -> d_model
# 直接使用 Mamba2 对序列 (patch_num) 建模 # 堆叠 n_layers 层 Mamba2
self.mamba = Mamba2( self.mambas = nn.ModuleList([
d_model=d_model, Mamba2(
d_state=d_state, d_model=d_model,
d_conv=d_conv, d_state=d_state,
expand=expand, d_conv=d_conv,
headdim=headdim, expand=expand,
) headdim=headdim,
)
for _ in range(n_layers)
])
def forward(self, x): def forward(self, x):
# x: [bs, nvars, patch_num, patch_len] # x: [bs, nvars, patch_num, patch_len]
@ -50,11 +56,12 @@ class Mamba2Encoder(nn.Module):
# 2) 合并 batch 与通道维度,作为 Mamba 的 batch # 2) 合并 batch 与通道维度,作为 Mamba 的 batch
u = x.reshape(bs * n_vars, patch_num, self.d_model) # u: [bs*nvars, patch_num, d_model] u = x.reshape(bs * n_vars, patch_num, self.d_model) # u: [bs*nvars, patch_num, d_model]
# 3) Mamba2 建模(在 patch_num 维度上) # 3) 通过 n_layers 层 Mamba2 进行建模(在 patch_num 维度上)
y = self.mamba(u) # y: [bs*nvars, patch_num, d_model] for m in self.mambas:
u = m(u) # 形状保持 [bs*nvars, patch_num, d_model]
# 4) 仅取最后一个时间步 # 4) 仅取最后一个时间步
y_last = y[:, -1, :] # y_last: [bs*nvars, d_model] y_last = u[:, -1, :] # y_last: [bs*nvars, d_model]
# 5) 还原回 (bs, nvars, d_model) # 5) 还原回 (bs, nvars, d_model)
y_last = y_last.view(bs, n_vars, self.d_model) # y_last: [bs, nvars, d_model] y_last = y_last.view(bs, n_vars, self.d_model) # y_last: [bs, nvars, d_model]