import numpy as np import matplotlib.pyplot as plt is_data = { "10encoder14decoder":[80.48, 104.48, 113.01, 117.29], "12encoder12decoder":[85.52, 109.91, 118.18, 121.77], "16encoder8decoder":[92.72, 116.30, 124.32, 126.37], "20encoder4decoder":[94.95, 117.84, 125.66, 128.30], } fid_data = { "10encoder14decoder":[15.17, 10.40, 9.32, 8.66], "12encoder12decoder":[13.79, 9.67, 8.64, 8.21], "16encoder8decoder":[12.41, 8.99, 8.18, 8.03], "20encoder4decoder":[12.04, 8.94, 8.03, 7.98], } sfid_data = { "10encoder14decoder":[5.49, 5.00, 5.09, 5.14], "12encoder12decoder":[5.37, 5.01, 5.07, 5.09], "16encoder8decoder":[5.43, 5.11, 5.20, 5.31], "20encoder4decoder":[5.36, 5.23, 5.21, 5.50], } pr_data = { "10encoder14decoder":[0.6517, 0.67914, 0.68274, 0.68104], "12encoder12decoder":[0.66144, 0.68146, 0.68564, 0.6823], "16encoder8decoder":[0.6659, 0.68342, 0.68338, 0.67912], "20encoder4decoder":[0.6716, 0.68088, 0.68798, 0.68098], } recall_data = { "10encoder14decoder":[0.6427, 0.6512, 0.6572, 0.6679], "12encoder12decoder":[0.6429, 0.6561, 0.6622, 0.6693], "16encoder8decoder":[0.6457, 0.6547, 0.6665, 0.6773], "20encoder4decoder":[0.6483, 0.6612, 0.6684, 0.6711], } x = [100, 200, 300, 400] # colors = ["#70d6ff", "#ff70a6", "#ff9770", "#ffd670", "#e9ff70"] colors = ["#52b69a", "#34a0a4", "#168aad", "#1a759f"] metric_data = { "FID50K" : fid_data, # "SFID" : sfid_data, "InceptionScore" : is_data, "Precision" : pr_data, "Recall" : recall_data, } for key, data in metric_data.items(): # plt.rc('axes.spines', **{'bottom': True, 'left': True, 'right': False, 'top': False}) for i, (name, v) in enumerate(data.items()): name = name.replace("encoder", "En") name = name.replace("decoder", "De") plt.plot(x, v, label=name, color=colors[i], linewidth=5.0, marker="o", markersize=8) plt.legend(fontsize="14") plt.grid(linestyle="-.", alpha=0.6, linewidth=0.5) plt.xticks([100, 150, 200, 250, 300, 350, 400]) plt.ylabel(key, weight="bold") plt.xlabel("Training iterations(K steps)", weight="bold") plt.savefig("output/large++_{}.pdf".format(key), bbox_inches='tight') plt.close()