import numpy as np import matplotlib.pyplot as plt fid_data = { "4encoder8decoder":[64.16, 48.04, 39.88, 35.41], "6encoder4decoder":[67.71, 48.26, 39.30, 34.91], "8encoder4decoder":[69.4, 49.7, 41.56, 36.76], } sfid_data = { "4encoder8decoder":[7.86, 7.48, 7.15, 7.07], "6encoder4decoder":[8.54, 8.11, 7.40, 7.40], "8encoder4decoder":[8.42, 8.27, 8.10, 7.69], } is_data = { "4encoder8decoder":[20.37, 29.41, 36.88, 41.32], "6encoder4decoder":[20.04, 30.13, 38.17, 43.84], "8encoder4decoder":[19.98, 29.54, 35.93, 42.025], } pr_data = { "4encoder8decoder":[0.3935, 0.4687, 0.5047, 0.5271], "6encoder4decoder":[0.3767, 0.4686, 0.50876, 0.5266], "8encoder4decoder":[0.37, 0.45676, 0.49602, 0.5162], } recall_data = { "4encoder8decoder":[0.5604, 0.5941, 0.6244, 0.6338], "6encoder4decoder":[0.5295, 0.595, 0.6287, 0.6378], "8encoder4decoder":[0.51, 0.596, 0.6242, 0.6333], } x = [100, 200, 300, 400] colors = ["#70d6ff", "#ff70a6", "#ff9770", "#ffd670", "#e9ff70"] metric_data = { "FID" : fid_data, # "SFID" : sfid_data, "InceptionScore" : is_data, "Precision" : pr_data, "Recall" : recall_data, } for key, data in metric_data.items(): for i, (name, v) in enumerate(data.items()): name = name.replace("encoder", "En") name = name.replace("decoder", "De") plt.plot(x, v, label=name, color=colors[i], linewidth=3, marker="o") plt.legend() plt.xticks(x) plt.ylabel(key, weight="bold") plt.xlabel("Training iterations(K steps)", weight="bold") plt.savefig("output/base_{}.pdf".format(key), bbox_inches='tight') plt.close()