This commit is contained in:
wangshuai6
2025-04-11 16:51:33 +08:00
parent 609cf377cb
commit ed3c466d08
2 changed files with 166 additions and 4 deletions

View File

@@ -38,13 +38,12 @@ pip install -r requirements.txt
# for inference # for inference
python main.py predict -c configs/repa_improved_ddt_xlen22de6_256.yaml --ckpt_path=XXX.ckpt python main.py predict -c configs/repa_improved_ddt_xlen22de6_256.yaml --ckpt_path=XXX.ckpt
``` ```
```bash
# extract image latent (optional)
python3 tools/cache_imlatent4.py
```
```bash ```bash
# for training # for training
# extract image latent (optional)
python3 tools/cache_imlatent4.py
# train
python main.py fit -c configs/repa_improved_ddt_xlen22de6_256.yaml python main.py fit -c configs/repa_improved_ddt_xlen22de6_256.yaml
``` ```

163
app.py Normal file
View File

@@ -0,0 +1,163 @@
# vae:
# class_path: src.models.vae.LatentVAE
# init_args:
# precompute: true
# weight_path: /mnt/bn/wangshuai6/models/sd-vae-ft-ema/
# denoiser:
# class_path: src.models.denoiser.decoupled_improved_dit.DDT
# init_args:
# in_channels: 4
# patch_size: 2
# num_groups: 16
# hidden_size: &hidden_dim 1152
# num_blocks: 28
# num_encoder_blocks: 22
# num_classes: 1000
# conditioner:
# class_path: src.models.conditioner.LabelConditioner
# init_args:
# null_class: 1000
# diffusion_sampler:
# class_path: src.diffusion.stateful_flow_matching.sampling.EulerSampler
# init_args:
# num_steps: 250
# guidance: 3.0
# state_refresh_rate: 1
# guidance_interval_min: 0.3
# guidance_interval_max: 1.0
# timeshift: 1.0
# last_step: 0.04
# scheduler: *scheduler
# w_scheduler: src.diffusion.stateful_flow_matching.scheduling.LinearScheduler
# guidance_fn: src.diffusion.base.guidance.simple_guidance_fn
# step_fn: src.diffusion.stateful_flow_matching.sampling.ode_step_fn
import torch
import argparse
from omegaconf import OmegaConf
from src.models.vae import fp2uint8
from src.diffusion.base.guidance import simple_guidance_fn
from src.diffusion.stateful_flow_matching.sharing_sampling import EulerSampler
from src.diffusion.stateful_flow_matching.scheduling import LinearScheduler
from PIL import Image
import gradio as gr
def instantiate_class(config):
kwargs = config.get("init_args", {})
class_module, class_name = config["class_path"].rsplit(".", 1)
module = __import__(class_module, fromlist=[class_name])
args_class = getattr(module, class_name)
return args_class(**kwargs)
def load_model(weight_dict, denosier):
prefix = "ema_denoiser."
for k, v in denoiser.state_dict().items():
try:
v.copy_(weight_dict["state_dict"][prefix + k])
except:
print(f"Failed to copy {prefix + k} to denoiser weight")
return denoiser
class Pipeline:
def __init__(self, vae, denoiser, conditioner, diffusion_sampler):
self.vae = vae
self.denoiser = denoiser
self.conditioner = conditioner
self.diffusion_sampler = diffusion_sampler
@torch.no_grad()
@torch.autocast(device_type="cuda", dtype=torch.bfloat16)
def __call__(self, y, num_images, seed, num_steps, guidance, state_refresh_rate, guidance_interval_min, guidance_interval_max, timeshift):
self.diffusion_sampler.num_steps = num_steps
self.diffusion_sampler.guidance = guidance
self.diffusion_sampler.state_refresh_rate = state_refresh_rate
self.diffusion_sampler.guidance_interval_min = guidance_interval_min
self.diffusion_sampler.guidance_interval_max = guidance_interval_max
self.diffusion_sampler.timeshift = timeshift
generator = torch.Generator(device="cuda").manual_seed(seed)
xT = torch.randn((num_images, 4, 32, 32), device="cuda", dtype=torch.float32, generator=generator)
with torch.no_grad():
condition, uncondition = conditioner(y)
# Sample images:
samples = diffusion_sampler(denoiser, xT, condition, uncondition)
samples = vae.decode(samples)
# fp32 -1,1 -> uint8 0,255
samples = fp2uint8(samples)
images = []
for i in range(num_images):
image = Image.fromarray(samples[i].cpu().numpy())
images.append(image)
return images
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default=None)
parser.add_argument("--resolution", type=int, default=256)
parser.add_argument("--ckpt_path", type=str, default="")
args = parser.parse_args()
config = OmegaConf.load(args.config)
vae_config = config.model.vae
diffusion_sampler_config = config.model.diffusion_sampler
denoiser_config = config.model.denoiser
conditioner_config = config.model.conditioner
vae = instantiate_class(vae_config)
denoiser = instantiate_class(denoiser_config)
conditioner = instantiate_class(conditioner_config)
diffusion_sampler = EulerSampler(
scheduler=LinearScheduler(),
w_scheduler=LinearScheduler(),
guidance_fn=simple_guidance_fn,
num_steps=50,
guidance=3.0,
state_refresh_rate=1,
guidance_interval_min=0.3,
guidance_interval_max=1.0,
timeshift=1.0
)
ckpt = torch.load(args.ckpt_path, map_location="cpu")
denoiser = load_model(ckpt, denoiser)
denoiser = denoiser.cuda()
vae = vae.cuda()
denoiser.eval()
pipeline = Pipeline(vae, denoiser, conditioner, diffusion_sampler)
with gr.Blocks() as demo:
gr.Markdown("DDT")
with gr.Row():
num_steps = gr.Slider(minimum=1, maximum=100, step=1, label="num steps", value=50)
guidance = gr.Slider(minimum=0.1, maximum=10.0, step=0.1, label="CFG", value=3.0)
num_images = gr.Slider(minimum=1, maximum=10, step=1, label="num images", value=1)
label = gr.Slider(minimum=0, maximum=999, step=1, label="label", value=1000)
seed = gr.Slider(minimum=0, maximum=1000000, step=1, label="seed", value=0)
with gr.Row():
state_refresh_rate = gr.Slider(minimum=1, maximum=10, step=1, label="encoder reuse", value=1)
guidance_interval_min = gr.Slider(minimum=0.1, maximum=1.0, step=0.1, label="interval guidance min", value=0.3)
guidance_interval_max = gr.Slider(minimum=0.1, maximum=1.0, step=0.1, label="interval guidance max", value=1.0)
timeshift = gr.Slider(minimum=0.1, maximum=10.0, step=0.1, label="timeshift", value=1.0)
btn = gr.Button("Generate")
output = gr.Gallery(label="Images")
btn.click(fn=pipeline,
inputs=[
label,
num_images,
seed,
num_steps,
guidance,
state_refresh_rate,
guidance_interval_min,
guidance_interval_max,
timeshift
], outputs=[output])
demo.launch()