disperse loss
This commit is contained in:
101
src/diffusion/flow_matching/training_disperse.py
Normal file
101
src/diffusion/flow_matching/training_disperse.py
Normal file
@@ -0,0 +1,101 @@
|
||||
import torch
|
||||
import copy
|
||||
import timm
|
||||
from torch.nn import Parameter
|
||||
|
||||
from src.utils.no_grad import no_grad
|
||||
from typing import Callable, Iterator, Tuple
|
||||
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
|
||||
from torchvision.transforms import Normalize
|
||||
from src.diffusion.base.training import *
|
||||
from src.diffusion.base.scheduling import BaseScheduler
|
||||
|
||||
def inverse_sigma(alpha, sigma):
|
||||
return 1/sigma**2
|
||||
def snr(alpha, sigma):
|
||||
return alpha/sigma
|
||||
def minsnr(alpha, sigma, threshold=5):
|
||||
return torch.clip(alpha/sigma, min=threshold)
|
||||
def maxsnr(alpha, sigma, threshold=5):
|
||||
return torch.clip(alpha/sigma, max=threshold)
|
||||
def constant(alpha, sigma):
|
||||
return 1
|
||||
|
||||
|
||||
def time_shift_fn(t, timeshift=1.0):
|
||||
return t/(t+(1-t)*timeshift)
|
||||
|
||||
|
||||
class DisperseTrainer(BaseTrainer):
|
||||
def __init__(
|
||||
self,
|
||||
scheduler: BaseScheduler,
|
||||
loss_weight_fn:Callable=constant,
|
||||
feat_loss_weight: float=0.5,
|
||||
lognorm_t=False,
|
||||
timeshift=1.0,
|
||||
align_layer=8,
|
||||
temperature=1.0,
|
||||
*args,
|
||||
**kwargs
|
||||
):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.lognorm_t = lognorm_t
|
||||
self.scheduler = scheduler
|
||||
self.timeshift = timeshift
|
||||
self.loss_weight_fn = loss_weight_fn
|
||||
self.feat_loss_weight = feat_loss_weight
|
||||
self.align_layer = align_layer
|
||||
self.temperature = temperature
|
||||
|
||||
def _impl_trainstep(self, net, ema_net, solver, x, y, metadata=None):
|
||||
batch_size, c, height, width = x.shape
|
||||
if self.lognorm_t:
|
||||
base_t = torch.randn((batch_size), device=x.device, dtype=torch.float32).sigmoid()
|
||||
else:
|
||||
base_t = torch.rand((batch_size), device=x.device, dtype=torch.float32)
|
||||
t = time_shift_fn(base_t, self.timeshift).to(x.dtype)
|
||||
noise = torch.randn_like(x)
|
||||
alpha = self.scheduler.alpha(t)
|
||||
dalpha = self.scheduler.dalpha(t)
|
||||
sigma = self.scheduler.sigma(t)
|
||||
dsigma = self.scheduler.dsigma(t)
|
||||
|
||||
x_t = alpha * x + noise * sigma
|
||||
v_t = dalpha * x + dsigma * noise
|
||||
|
||||
src_feature = []
|
||||
def forward_hook(net, input, output):
|
||||
feature = output
|
||||
if isinstance(feature, tuple):
|
||||
feature = feature[0] # mmdit
|
||||
src_feature.append(feature)
|
||||
|
||||
if getattr(net, "encoder", None) is not None:
|
||||
handle = net.encoder.blocks[self.align_layer - 1].register_forward_hook(forward_hook)
|
||||
else:
|
||||
handle = net.blocks[self.align_layer - 1].register_forward_hook(forward_hook)
|
||||
|
||||
out = net(x_t, t, y)
|
||||
handle.remove()
|
||||
disperse_distance = 0.0
|
||||
for sf in src_feature:
|
||||
sf = torch.mean(sf, dim=1, keepdim=False)
|
||||
distance = (sf[None, :, :] - sf[:, None, :])**2
|
||||
distance = distance.sum(dim=-1)
|
||||
sf_disperse_loss = torch.exp(-distance/self.temperature)
|
||||
mask = 1-torch.eye(batch_size, device=distance.device, dtype=distance.dtype)
|
||||
disperse_distance += (sf_disperse_loss*mask).sum()/mask.numel() + 1e-6
|
||||
disperse_loss = disperse_distance.log()
|
||||
|
||||
|
||||
weight = self.loss_weight_fn(alpha, sigma)
|
||||
fm_loss = weight*(out - v_t)**2
|
||||
|
||||
out = dict(
|
||||
fm_loss=fm_loss.mean(),
|
||||
cos_loss=disperse_loss.mean(),
|
||||
loss=fm_loss.mean() + self.feat_loss_weight*disperse_loss.mean(),
|
||||
)
|
||||
return out
|
||||
|
||||
Reference in New Issue
Block a user