submit code

This commit is contained in:
wangshuai6
2025-04-09 11:01:16 +08:00
parent 4fbcf9bd87
commit 06499f1caa
145 changed files with 14400 additions and 0 deletions

View File

@@ -0,0 +1,107 @@
import math
from src.diffusion.base.sampling import *
from src.diffusion.base.scheduling import *
from src.diffusion.pre_integral import *
from typing import Callable, List, Tuple
def ode_step_fn(x, v, dt, s, w):
return x + v * dt
def t2snr(t):
if isinstance(t, torch.Tensor):
return (t.clip(min=1e-8)/(1-t + 1e-8))
if isinstance(t, List) or isinstance(t, Tuple):
return [t2snr(t) for t in t]
t = max(t, 1e-8)
return (t/(1-t + 1e-8))
def t2logsnr(t):
if isinstance(t, torch.Tensor):
return torch.log(t.clip(min=1e-3)/(1-t + 1e-3))
if isinstance(t, List) or isinstance(t, Tuple):
return [t2logsnr(t) for t in t]
t = max(t, 1e-3)
return math.log(t/(1-t + 1e-3))
def t2isnr(t):
return 1/t2snr(t)
def nop(t):
return t
def shift_respace_fn(t, shift=3.0):
return t / (t + (1 - t) * shift)
import logging
logger = logging.getLogger(__name__)
class AdamLMSampler(BaseSampler):
def __init__(
self,
order: int = 2,
timeshift: float = 1.0,
lms_transform_fn: Callable = nop,
w_scheduler: BaseScheduler = None,
step_fn: Callable = ode_step_fn,
*args,
**kwargs
):
super().__init__(*args, **kwargs)
self.step_fn = step_fn
self.w_scheduler = w_scheduler
assert self.scheduler is not None
assert self.w_scheduler is not None or self.step_fn in [ode_step_fn, ]
self.order = order
self.lms_transform_fn = lms_transform_fn
timesteps = torch.linspace(0.0, 1 - self.last_step, self.num_steps)
timesteps = torch.cat([timesteps, torch.tensor([1.0])], dim=0)
self.timesteps = shift_respace_fn(timesteps, timeshift)
self.timedeltas = timesteps[1:] - self.timesteps[:-1]
self._reparameterize_coeffs()
def _reparameterize_coeffs(self):
solver_coeffs = [[] for _ in range(self.num_steps)]
for i in range(0, self.num_steps):
pre_vs = [1.0, ]*(i+1)
pre_ts = self.lms_transform_fn(self.timesteps[:i+1])
int_t_start = self.lms_transform_fn(self.timesteps[i])
int_t_end = self.lms_transform_fn(self.timesteps[i+1])
order_annealing = self.order #self.num_steps - i
order = min(self.order, i + 1, order_annealing)
_, coeffs = lagrange_preint(order, pre_vs, pre_ts, int_t_start, int_t_end)
solver_coeffs[i] = coeffs
self.solver_coeffs = solver_coeffs
def _impl_sampling(self, net, noise, condition, uncondition):
"""
sampling process of Euler sampler
-
"""
batch_size = noise.shape[0]
cfg_condition = torch.cat([uncondition, condition], dim=0)
x = x0 = noise
pred_trajectory = []
t_cur = torch.zeros([batch_size,]).to(noise.device, noise.dtype)
timedeltas = self.timedeltas
solver_coeffs = self.solver_coeffs
for i in range(self.num_steps):
cfg_x = torch.cat([x, x], dim=0)
cfg_t = t_cur.repeat(2)
out = net(cfg_x, cfg_t, cfg_condition)
out = self.guidance_fn(out, self.guidances[i])
pred_trajectory.append(out)
out = torch.zeros_like(out)
order = len(self.solver_coeffs[i])
for j in range(order):
out += solver_coeffs[i][j] * pred_trajectory[-order:][j]
v = out
dt = timedeltas[i]
x0 = self.step_fn(x, v, 1-t_cur[0], s=0, w=0)
x = self.step_fn(x, v, dt, s=0, w=0)
t_cur += dt
return x

View File

@@ -0,0 +1,179 @@
import torch
from src.diffusion.base.guidance import *
from src.diffusion.base.scheduling import *
from src.diffusion.base.sampling import *
from typing import Callable
def shift_respace_fn(t, shift=3.0):
return t / (t + (1 - t) * shift)
def ode_step_fn(x, v, dt, s, w):
return x + v * dt
def sde_mean_step_fn(x, v, dt, s, w):
return x + v * dt + s * w * dt
def sde_step_fn(x, v, dt, s, w):
return x + v*dt + s * w* dt + torch.sqrt(2*w*dt)*torch.randn_like(x)
def sde_preserve_step_fn(x, v, dt, s, w):
return x + v*dt + 0.5*s*w* dt + torch.sqrt(w*dt)*torch.randn_like(x)
import logging
logger = logging.getLogger(__name__)
class EulerSampler(BaseSampler):
def __init__(
self,
w_scheduler: BaseScheduler = None,
timeshift=1.0,
step_fn: Callable = ode_step_fn,
last_step=None,
last_step_fn: Callable = ode_step_fn,
*args,
**kwargs
):
super().__init__(*args, **kwargs)
self.step_fn = step_fn
self.last_step = last_step
self.last_step_fn = last_step_fn
self.w_scheduler = w_scheduler
self.timeshift = timeshift
if self.last_step is None or self.num_steps == 1:
self.last_step = 1.0 / self.num_steps
timesteps = torch.linspace(0.0, 1 - self.last_step, self.num_steps)
timesteps = torch.cat([timesteps, torch.tensor([1.0])], dim=0)
self.timesteps = shift_respace_fn(timesteps, self.timeshift)
assert self.last_step > 0.0
assert self.scheduler is not None
assert self.w_scheduler is not None or self.step_fn in [ode_step_fn, ]
if self.w_scheduler is not None:
if self.step_fn == ode_step_fn:
logger.warning("current sampler is ODE sampler, but w_scheduler is enabled")
def _impl_sampling(self, net, noise, condition, uncondition):
"""
sampling process of Euler sampler
-
"""
batch_size = noise.shape[0]
steps = self.timesteps.to(noise.device)
cfg_condition = torch.cat([uncondition, condition], dim=0)
x = noise
for i, (t_cur, t_next) in enumerate(zip(steps[:-1], steps[1:])):
dt = t_next - t_cur
t_cur = t_cur.repeat(batch_size)
sigma = self.scheduler.sigma(t_cur)
dalpha_over_alpha = self.scheduler.dalpha_over_alpha(t_cur)
dsigma_mul_sigma = self.scheduler.dsigma_mul_sigma(t_cur)
if self.w_scheduler:
w = self.w_scheduler.w(t_cur)
else:
w = 0.0
cfg_x = torch.cat([x, x], dim=0)
cfg_t = t_cur.repeat(2)
out = net(cfg_x, cfg_t, cfg_condition)
out = self.guidance_fn(out, self.guidance)
v = out
s = ((1/dalpha_over_alpha)*v - x)/(sigma**2 - (1/dalpha_over_alpha)*dsigma_mul_sigma)
if i < self.num_steps -1 :
x = self.step_fn(x, v, dt, s=s, w=w)
else:
x = self.last_step_fn(x, v, dt, s=s, w=w)
return x
class HeunSampler(BaseSampler):
def __init__(
self,
scheduler: BaseScheduler = None,
w_scheduler: BaseScheduler = None,
exact_henu=False,
timeshift=1.0,
step_fn: Callable = ode_step_fn,
last_step=None,
last_step_fn: Callable = ode_step_fn,
*args,
**kwargs
):
super().__init__(*args, **kwargs)
self.scheduler = scheduler
self.exact_henu = exact_henu
self.step_fn = step_fn
self.last_step = last_step
self.last_step_fn = last_step_fn
self.w_scheduler = w_scheduler
self.timeshift = timeshift
timesteps = torch.linspace(0.0, 1 - self.last_step, self.num_steps)
timesteps = torch.cat([timesteps, torch.tensor([1.0])], dim=0)
self.timesteps = shift_respace_fn(timesteps, self.timeshift)
if self.last_step is None or self.num_steps == 1:
self.last_step = 1.0 / self.num_steps
assert self.last_step > 0.0
assert self.scheduler is not None
assert self.w_scheduler is not None or self.step_fn in [ode_step_fn, ]
if self.w_scheduler is not None:
if self.step_fn == ode_step_fn:
logger.warning("current sampler is ODE sampler, but w_scheduler is enabled")
def _impl_sampling(self, net, noise, condition, uncondition):
"""
sampling process of Henu sampler
-
"""
batch_size = noise.shape[0]
steps = self.timesteps.to(noise.device)
cfg_condition = torch.cat([uncondition, condition], dim=0)
x = noise
v_hat, s_hat = 0.0, 0.0
for i, (t_cur, t_next) in enumerate(zip(steps[:-1], steps[1:])):
dt = t_next - t_cur
t_cur = t_cur.repeat(batch_size)
sigma = self.scheduler.sigma(t_cur)
alpha_over_dalpha = 1/self.scheduler.dalpha_over_alpha(t_cur)
dsigma_mul_sigma = self.scheduler.dsigma_mul_sigma(t_cur)
t_hat = t_next
t_hat = t_hat.repeat(batch_size)
sigma_hat = self.scheduler.sigma(t_hat)
alpha_over_dalpha_hat = 1 / self.scheduler.dalpha_over_alpha(t_hat)
dsigma_mul_sigma_hat = self.scheduler.dsigma_mul_sigma(t_hat)
if self.w_scheduler:
w = self.w_scheduler.w(t_cur)
else:
w = 0.0
if i == 0 or self.exact_henu:
cfg_x = torch.cat([x, x], dim=0)
cfg_t_cur = t_cur.repeat(2)
out = net(cfg_x, cfg_t_cur, cfg_condition)
out = self.guidance_fn(out, self.guidance)
v = out
s = ((alpha_over_dalpha)*v - x)/(sigma**2 - (alpha_over_dalpha)*dsigma_mul_sigma)
else:
v = v_hat
s = s_hat
x_hat = self.step_fn(x, v, dt, s=s, w=w)
# henu correct
if i < self.num_steps -1:
cfg_x_hat = torch.cat([x_hat, x_hat], dim=0)
cfg_t_hat = t_hat.repeat(2)
out = net(cfg_x_hat, cfg_t_hat, cfg_condition)
out = self.guidance_fn(out, self.guidance)
v_hat = out
s_hat = ((alpha_over_dalpha_hat)* v_hat - x_hat) / (sigma_hat ** 2 - (alpha_over_dalpha_hat) * dsigma_mul_sigma_hat)
v = (v + v_hat) / 2
s = (s + s_hat) / 2
x = self.step_fn(x, v, dt, s=s, w=w)
else:
x = self.last_step_fn(x, v, dt, s=s, w=w)
return x

View File

@@ -0,0 +1,39 @@
import math
import torch
from src.diffusion.base.scheduling import *
class LinearScheduler(BaseScheduler):
def alpha(self, t) -> Tensor:
return (t).view(-1, 1, 1, 1)
def sigma(self, t) -> Tensor:
return (1-t).view(-1, 1, 1, 1)
def dalpha(self, t) -> Tensor:
return torch.full_like(t, 1.0).view(-1, 1, 1, 1)
def dsigma(self, t) -> Tensor:
return torch.full_like(t, -1.0).view(-1, 1, 1, 1)
# SoTA for ImageNet!
class GVPScheduler(BaseScheduler):
def alpha(self, t) -> Tensor:
return torch.cos(t * (math.pi / 2)).view(-1, 1, 1, 1)
def sigma(self, t) -> Tensor:
return torch.sin(t * (math.pi / 2)).view(-1, 1, 1, 1)
def dalpha(self, t) -> Tensor:
return -torch.sin(t * (math.pi / 2)).view(-1, 1, 1, 1)
def dsigma(self, t) -> Tensor:
return torch.cos(t * (math.pi / 2)).view(-1, 1, 1, 1)
def w(self, t):
return torch.sin(t)**2
class ConstScheduler(BaseScheduler):
def w(self, t):
return torch.ones(1, 1, 1, 1).to(t.device, t.dtype)
from src.diffusion.ddpm.scheduling import VPScheduler
class VPBetaScheduler(VPScheduler):
def w(self, t):
return self.beta(t).view(-1, 1, 1, 1)

View File

@@ -0,0 +1,55 @@
import torch
from typing import Callable
from src.diffusion.base.training import *
from src.diffusion.base.scheduling import BaseScheduler
def inverse_sigma(alpha, sigma):
return 1/sigma**2
def snr(alpha, sigma):
return alpha/sigma
def minsnr(alpha, sigma, threshold=5):
return torch.clip(alpha/sigma, min=threshold)
def maxsnr(alpha, sigma, threshold=5):
return torch.clip(alpha/sigma, max=threshold)
def constant(alpha, sigma):
return 1
class FlowMatchingTrainer(BaseTrainer):
def __init__(
self,
scheduler: BaseScheduler,
loss_weight_fn:Callable=constant,
lognorm_t=False,
*args,
**kwargs
):
super().__init__(*args, **kwargs)
self.lognorm_t = lognorm_t
self.scheduler = scheduler
self.loss_weight_fn = loss_weight_fn
def _impl_trainstep(self, net, ema_net, raw_images, x, y):
batch_size = x.shape[0]
if self.lognorm_t:
t = torch.randn(batch_size).to(x.device, x.dtype).sigmoid()
else:
t = torch.rand(batch_size).to(x.device, x.dtype)
noise = torch.randn_like(x)
alpha = self.scheduler.alpha(t)
dalpha = self.scheduler.dalpha(t)
sigma = self.scheduler.sigma(t)
dsigma = self.scheduler.dsigma(t)
w = self.scheduler.w(t)
x_t = alpha * x + noise * sigma
v_t = dalpha * x + dsigma * noise
out = net(x_t, t, y)
weight = self.loss_weight_fn(alpha, sigma)
loss = weight*(out - v_t)**2
out = dict(
loss=loss.mean(),
)
return out

View File

@@ -0,0 +1,59 @@
import torch
from typing import Callable
from src.diffusion.base.training import *
from src.diffusion.base.scheduling import BaseScheduler
def inverse_sigma(alpha, sigma):
return 1/sigma**2
def snr(alpha, sigma):
return alpha/sigma
def minsnr(alpha, sigma, threshold=5):
return torch.clip(alpha/sigma, min=threshold)
def maxsnr(alpha, sigma, threshold=5):
return torch.clip(alpha/sigma, max=threshold)
def constant(alpha, sigma):
return 1
class COSTrainer(BaseTrainer):
def __init__(
self,
scheduler: BaseScheduler,
loss_weight_fn:Callable=constant,
lognorm_t=False,
*args,
**kwargs
):
super().__init__(*args, **kwargs)
self.lognorm_t = lognorm_t
self.scheduler = scheduler
self.loss_weight_fn = loss_weight_fn
def _impl_trainstep(self, net, ema_net, raw_images, x, y):
batch_size = x.shape[0]
if self.lognorm_t:
t = torch.randn(batch_size).to(x.device, x.dtype).sigmoid()
else:
t = torch.rand(batch_size).to(x.device, x.dtype)
noise = torch.randn_like(x)
alpha = self.scheduler.alpha(t)
dalpha = self.scheduler.dalpha(t)
sigma = self.scheduler.sigma(t)
dsigma = self.scheduler.dsigma(t)
w = self.scheduler.w(t)
x_t = alpha * x + noise * sigma
v_t = dalpha * x + dsigma * noise
out = net(x_t, t, y)
weight = self.loss_weight_fn(alpha, sigma)
fm_loss = weight*(out - v_t)**2
cos_sim = torch.nn.functional.cosine_similarity(out, v_t, dim=1)
cos_loss = 1 - cos_sim
out = dict(
fm_loss=fm_loss.mean(),
cos_loss=cos_loss.mean(),
loss=fm_loss.mean() + cos_loss.mean(),
)
return out

View File

@@ -0,0 +1,68 @@
import torch
from typing import Callable
from src.diffusion.base.training import *
from src.diffusion.base.scheduling import BaseScheduler
def inverse_sigma(alpha, sigma):
return 1/sigma**2
def snr(alpha, sigma):
return alpha/sigma
def minsnr(alpha, sigma, threshold=5):
return torch.clip(alpha/sigma, min=threshold)
def maxsnr(alpha, sigma, threshold=5):
return torch.clip(alpha/sigma, max=threshold)
def constant(alpha, sigma):
return 1
class PyramidTrainer(BaseTrainer):
def __init__(
self,
scheduler: BaseScheduler,
loss_weight_fn:Callable=constant,
lognorm_t=False,
*args,
**kwargs
):
super().__init__(*args, **kwargs)
self.lognorm_t = lognorm_t
self.scheduler = scheduler
self.loss_weight_fn = loss_weight_fn
def _impl_trainstep(self, net, ema_net, raw_images, x, y):
batch_size = x.shape[0]
if self.lognorm_t:
t = torch.randn(batch_size).to(x.device, x.dtype).sigmoid()
else:
t = torch.rand(batch_size).to(x.device, x.dtype)
noise = torch.randn_like(x)
alpha = self.scheduler.alpha(t)
dalpha = self.scheduler.dalpha(t)
sigma = self.scheduler.sigma(t)
dsigma = self.scheduler.dsigma(t)
w = self.scheduler.w(t)
x_t = alpha * x + noise * sigma
v_t = dalpha * x + dsigma * noise
output_pyramid = []
def feature_hook(module, input, output):
output_pyramid.extend(output)
handle = net.decoder.register_forward_hook(feature_hook)
net(x_t, t, y)
handle.remove()
loss = 0.0
out_dict = dict()
cur_v_t = v_t
for i in range(len(output_pyramid)):
cur_out = output_pyramid[i]
loss_i = (cur_v_t - cur_out) ** 2
loss += loss_i.mean()
out_dict["loss_{}".format(i)] = loss_i.mean()
cur_v_t = torch.nn.functional.interpolate(cur_v_t, scale_factor=0.5, mode='bilinear', align_corners=False)
out_dict["loss"] = loss
return out_dict

View File

@@ -0,0 +1,142 @@
import torch
import copy
import timm
from torch.nn import Parameter
from src.utils.no_grad import no_grad
from typing import Callable, Iterator, Tuple
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from torchvision.transforms import Normalize
from src.diffusion.base.training import *
from src.diffusion.base.scheduling import BaseScheduler
def inverse_sigma(alpha, sigma):
return 1/sigma**2
def snr(alpha, sigma):
return alpha/sigma
def minsnr(alpha, sigma, threshold=5):
return torch.clip(alpha/sigma, min=threshold)
def maxsnr(alpha, sigma, threshold=5):
return torch.clip(alpha/sigma, max=threshold)
def constant(alpha, sigma):
return 1
class DINOv2(nn.Module):
def __init__(self, weight_path:str):
super(DINOv2, self).__init__()
self.encoder = torch.hub.load(
'/mnt/bn/wangshuai6/torch_hub/facebookresearch_dinov2_main',
weight_path,
source="local",
skip_validation=True
)
self.pos_embed = copy.deepcopy(self.encoder.pos_embed)
self.encoder.head = torch.nn.Identity()
self.patch_size = self.encoder.patch_embed.patch_size
self.precomputed_pos_embed = dict()
def fetch_pos(self, h, w):
key = (h, w)
if key in self.precomputed_pos_embed:
return self.precomputed_pos_embed[key]
value = timm.layers.pos_embed.resample_abs_pos_embed(
self.pos_embed.data, [h, w],
)
self.precomputed_pos_embed[key] = value
return value
def forward(self, x):
b, c, h, w = x.shape
x = Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD)(x)
x = torch.nn.functional.interpolate(x, (int(224*h/256), int(224*w/256)), mode='bicubic')
b, c, h, w = x.shape
patch_num_h, patch_num_w = h//self.patch_size[0], w//self.patch_size[1]
pos_embed_data = self.fetch_pos(patch_num_h, patch_num_w)
self.encoder.pos_embed.data = pos_embed_data
feature = self.encoder.forward_features(x)['x_norm_patchtokens']
return feature
class REPATrainer(BaseTrainer):
def __init__(
self,
scheduler: BaseScheduler,
loss_weight_fn:Callable=constant,
feat_loss_weight: float=0.5,
lognorm_t=False,
encoder_weight_path=None,
align_layer=8,
proj_denoiser_dim=256,
proj_hidden_dim=256,
proj_encoder_dim=256,
*args,
**kwargs
):
super().__init__(*args, **kwargs)
self.lognorm_t = lognorm_t
self.scheduler = scheduler
self.loss_weight_fn = loss_weight_fn
self.feat_loss_weight = feat_loss_weight
self.align_layer = align_layer
self.encoder = DINOv2(encoder_weight_path)
no_grad(self.encoder)
self.proj = nn.Sequential(
nn.Sequential(
nn.Linear(proj_denoiser_dim, proj_hidden_dim),
nn.SiLU(),
nn.Linear(proj_hidden_dim, proj_hidden_dim),
nn.SiLU(),
nn.Linear(proj_hidden_dim, proj_encoder_dim),
)
)
def _impl_trainstep(self, net, ema_net, raw_images, x, y):
batch_size, c, height, width = x.shape
if self.lognorm_t:
base_t = torch.randn((batch_size), device=x.device, dtype=x.dtype).sigmoid()
else:
base_t = torch.rand((batch_size), device=x.device, dtype=x.dtype)
t = base_t
noise = torch.randn_like(x)
alpha = self.scheduler.alpha(t)
dalpha = self.scheduler.dalpha(t)
sigma = self.scheduler.sigma(t)
dsigma = self.scheduler.dsigma(t)
x_t = alpha * x + noise * sigma
v_t = dalpha * x + dsigma * noise
src_feature = []
def forward_hook(net, input, output):
src_feature.append(output)
handle = net.blocks[self.align_layer - 1].register_forward_hook(forward_hook)
out = net(x_t, t, y)
src_feature = self.proj(src_feature[0])
handle.remove()
with torch.no_grad():
dst_feature = self.encoder(raw_images)
cos_sim = torch.nn.functional.cosine_similarity(src_feature, dst_feature, dim=-1)
cos_loss = 1 - cos_sim
weight = self.loss_weight_fn(alpha, sigma)
fm_loss = weight*(out - v_t)**2
out = dict(
fm_loss=fm_loss.mean(),
cos_loss=cos_loss.mean(),
loss=fm_loss.mean() + self.feat_loss_weight*cos_loss.mean(),
)
return out
def state_dict(self, *args, destination=None, prefix="", keep_vars=False):
self.proj.state_dict(
destination=destination,
prefix=prefix + "proj.",
keep_vars=keep_vars)

View File

@@ -0,0 +1,152 @@
import torch
import copy
import timm
from torch.nn import Parameter
from src.utils.no_grad import no_grad
from typing import Callable, Iterator, Tuple
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from torchvision.transforms import Normalize
from src.diffusion.base.training import *
from src.diffusion.base.scheduling import BaseScheduler
def inverse_sigma(alpha, sigma):
return 1/sigma**2
def snr(alpha, sigma):
return alpha/sigma
def minsnr(alpha, sigma, threshold=5):
return torch.clip(alpha/sigma, min=threshold)
def maxsnr(alpha, sigma, threshold=5):
return torch.clip(alpha/sigma, max=threshold)
def constant(alpha, sigma):
return 1
class DINOv2(nn.Module):
def __init__(self, weight_path:str):
super(DINOv2, self).__init__()
self.encoder = torch.hub.load(
'/mnt/bn/wangshuai6/torch_hub/facebookresearch_dinov2_main',
weight_path,
source="local",
skip_validation=True
)
self.pos_embed = copy.deepcopy(self.encoder.pos_embed)
self.encoder.head = torch.nn.Identity()
self.patch_size = self.encoder.patch_embed.patch_size
self.precomputed_pos_embed = dict()
def fetch_pos(self, h, w):
key = (h, w)
if key in self.precomputed_pos_embed:
return self.precomputed_pos_embed[key]
value = timm.layers.pos_embed.resample_abs_pos_embed(
self.pos_embed.data, [h, w],
)
self.precomputed_pos_embed[key] = value
return value
def forward(self, x):
b, c, h, w = x.shape
x = Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD)(x)
x = torch.nn.functional.interpolate(x, (int(224*h/256), int(224*w/256)), mode='bicubic')
b, c, h, w = x.shape
patch_num_h, patch_num_w = h//self.patch_size[0], w//self.patch_size[1]
pos_embed_data = self.fetch_pos(patch_num_h, patch_num_w)
self.encoder.pos_embed.data = pos_embed_data
feature = self.encoder.forward_features(x)['x_norm_patchtokens']
return feature
class REPATrainer(BaseTrainer):
def __init__(
self,
scheduler: BaseScheduler,
loss_weight_fn:Callable=constant,
feat_loss_weight: float=0.5,
lognorm_t=False,
mask_ratio=0.0,
mask_patch_size=2,
encoder_weight_path=None,
align_layer=8,
proj_denoiser_dim=256,
proj_hidden_dim=256,
proj_encoder_dim=256,
*args,
**kwargs
):
super().__init__(*args, **kwargs)
self.lognorm_t = lognorm_t
self.scheduler = scheduler
self.loss_weight_fn = loss_weight_fn
self.mask_ratio = mask_ratio
self.mask_patch_size = mask_patch_size
self.feat_loss_weight = feat_loss_weight
self.align_layer = align_layer
self.encoder = DINOv2(encoder_weight_path)
no_grad(self.encoder)
self.proj = nn.Sequential(
nn.Sequential(
nn.Linear(proj_denoiser_dim, proj_hidden_dim),
nn.SiLU(),
nn.Linear(proj_hidden_dim, proj_hidden_dim),
nn.SiLU(),
nn.Linear(proj_hidden_dim, proj_encoder_dim),
)
)
def _impl_trainstep(self, net, ema_net, raw_images, x, y):
batch_size, c, height, width = x.shape
if self.lognorm_t:
base_t = torch.randn((batch_size), device=x.device, dtype=x.dtype).sigmoid()
else:
base_t = torch.rand((batch_size), device=x.device, dtype=x.dtype)
t = base_t
noise = torch.randn_like(x)
alpha = self.scheduler.alpha(t)
dalpha = self.scheduler.dalpha(t)
sigma = self.scheduler.sigma(t)
dsigma = self.scheduler.dsigma(t)
patch_mask = torch.rand((batch_size, 1, height//self.mask_patch_size, width//self.mask_patch_size), device=x.device)
patch_mask = (patch_mask < self.mask_ratio).float()
mask = torch.nn.functional.interpolate(patch_mask, size=(height, width), mode='nearest')
masked_x = x*(1-mask)# + torch.randn_like(x)*(mask)
x_t = alpha*masked_x + sigma*noise
v_t = dalpha*x + dsigma*noise
src_feature = []
def forward_hook(net, input, output):
src_feature.append(output)
handle = net.blocks[self.align_layer - 1].register_forward_hook(forward_hook)
v_t_out, x0_out = net(x_t, t, y)
src_feature = self.proj(src_feature[0])
handle.remove()
with torch.no_grad():
dst_feature = self.encoder(raw_images)
cos_sim = torch.nn.functional.cosine_similarity(src_feature, dst_feature, dim=-1)
cos_loss = 1 - cos_sim
weight = self.loss_weight_fn(alpha, sigma)
fm_loss = (1-mask)*weight*(v_t_out - v_t)**2/(1-mask.mean())
mask_loss = mask*weight*(x0_out - x)**2/(mask.mean())
out = dict(
fm_loss=fm_loss.mean(),
cos_loss=cos_loss.mean(),
mask_loss=mask_loss.mean(),
loss=fm_loss.mean() + self.feat_loss_weight*cos_loss.mean() + mask_loss.mean(),
)
return out
def state_dict(self, *args, destination=None, prefix="", keep_vars=False):
self.proj.state_dict(
destination=destination,
prefix=prefix + "proj.",
keep_vars=keep_vars)