submit code
This commit is contained in:
59
src/diffusion/ddpm/vp_sampling.py
Normal file
59
src/diffusion/ddpm/vp_sampling.py
Normal file
@@ -0,0 +1,59 @@
|
||||
import torch
|
||||
|
||||
from src.diffusion.base.scheduling import *
|
||||
from src.diffusion.base.sampling import *
|
||||
from typing import Callable
|
||||
|
||||
def ode_step_fn(x, eps, beta, sigma, dt):
|
||||
return x + (-0.5*beta*x + 0.5*eps*beta/sigma)*dt
|
||||
|
||||
def sde_step_fn(x, eps, beta, sigma, dt):
|
||||
return x + (-0.5*beta*x + eps*beta/sigma)*dt + torch.sqrt(dt.abs()*beta)*torch.randn_like(x)
|
||||
|
||||
import logging
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
class VPEulerSampler(BaseSampler):
|
||||
def __init__(
|
||||
self,
|
||||
train_max_t=1000,
|
||||
guidance_fn: Callable = None,
|
||||
step_fn: Callable = ode_step_fn,
|
||||
last_step=None,
|
||||
last_step_fn: Callable = ode_step_fn,
|
||||
*args,
|
||||
**kwargs
|
||||
):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.guidance_fn = guidance_fn
|
||||
self.step_fn = step_fn
|
||||
self.last_step = last_step
|
||||
self.last_step_fn = last_step_fn
|
||||
self.train_max_t = train_max_t
|
||||
|
||||
if self.last_step is None or self.num_steps == 1:
|
||||
self.last_step = 1.0 / self.num_steps
|
||||
assert self.last_step > 0.0
|
||||
assert self.scheduler is not None
|
||||
|
||||
def _impl_sampling(self, net, noise, condition, uncondition):
|
||||
batch_size = noise.shape[0]
|
||||
steps = torch.linspace(1.0, self.last_step, self.num_steps, device=noise.device)
|
||||
steps = torch.cat([steps, torch.tensor([0.0], device=noise.device)], dim=0)
|
||||
cfg_condition = torch.cat([uncondition, condition], dim=0)
|
||||
x = noise
|
||||
for i, (t_cur, t_next) in enumerate(zip(steps[:-1], steps[1:])):
|
||||
dt = t_next - t_cur
|
||||
t_cur = t_cur.repeat(batch_size)
|
||||
sigma = self.scheduler.sigma(t_cur)
|
||||
beta = self.scheduler.beta(t_cur)
|
||||
cfg_x = torch.cat([x, x], dim=0)
|
||||
cfg_t = t_cur.repeat(2)
|
||||
out = net(cfg_x, cfg_t*self.train_max_t, cfg_condition)
|
||||
eps = self.guidance_fn(out, self.guidance)
|
||||
if i < self.num_steps -1 :
|
||||
x0 = self.last_step_fn(x, eps, beta, sigma, -t_cur[0])
|
||||
x = self.step_fn(x, eps, beta, sigma, dt)
|
||||
else:
|
||||
x = x0 = self.last_step_fn(x, eps, beta, sigma, -self.last_step)
|
||||
return x
|
||||
Reference in New Issue
Block a user