submit code

This commit is contained in:
wangshuai6
2025-04-09 11:01:16 +08:00
parent 4fbcf9bd87
commit 06499f1caa
145 changed files with 14400 additions and 0 deletions

View File

@@ -0,0 +1,60 @@
import torch
def simple_guidance_fn(out, cfg):
uncondition, condtion = out.chunk(2, dim=0)
out = uncondition + cfg * (condtion - uncondition)
return out
def c3_guidance_fn(out, cfg):
# guidance function in DiT/SiT, seems like a bug not a feature?
uncondition, condtion = out.chunk(2, dim=0)
out = condtion
out[:, :3] = uncondition[:, :3] + cfg * (condtion[:, :3] - uncondition[:, :3])
return out
def c4_guidance_fn(out, cfg):
# guidance function in DiT/SiT, seems like a bug not a feature?
uncondition, condition = out.chunk(2, dim=0)
out = condition
out[:, :4] = uncondition[:, :4] + cfg * (condition[:, :4] - uncondition[:, :4])
out[:, 4:] = uncondition[:, 4:] + 1.05 * (condition[:, 4:] - uncondition[:, 4:])
return out
def c4_p05_guidance_fn(out, cfg):
# guidance function in DiT/SiT, seems like a bug not a feature?
uncondition, condition = out.chunk(2, dim=0)
out = condition
out[:, :4] = uncondition[:, :4] + cfg * (condition[:, :4] - uncondition[:, :4])
out[:, 4:] = uncondition[:, 4:] + 1.05 * (condition[:, 4:] - uncondition[:, 4:])
return out
def c4_p10_guidance_fn(out, cfg):
# guidance function in DiT/SiT, seems like a bug not a feature?
uncondition, condition = out.chunk(2, dim=0)
out = condition
out[:, :4] = uncondition[:, :4] + cfg * (condition[:, :4] - uncondition[:, :4])
out[:, 4:] = uncondition[:, 4:] + 1.10 * (condition[:, 4:] - uncondition[:, 4:])
return out
def c4_p15_guidance_fn(out, cfg):
# guidance function in DiT/SiT, seems like a bug not a feature?
uncondition, condition = out.chunk(2, dim=0)
out = condition
out[:, :4] = uncondition[:, :4] + cfg * (condition[:, :4] - uncondition[:, :4])
out[:, 4:] = uncondition[:, 4:] + 1.15 * (condition[:, 4:] - uncondition[:, 4:])
return out
def c4_p20_guidance_fn(out, cfg):
# guidance function in DiT/SiT, seems like a bug not a feature?
uncondition, condition = out.chunk(2, dim=0)
out = condition
out[:, :4] = uncondition[:, :4] + cfg * (condition[:, :4] - uncondition[:, :4])
out[:, 4:] = uncondition[:, 4:] + 1.20 * (condition[:, 4:] - uncondition[:, 4:])
return out
def p4_guidance_fn(out, cfg):
# guidance function in DiT/SiT, seems like a bug not a feature?
uncondition, condtion = out.chunk(2, dim=0)
out = condtion
out[:, 4:] = uncondition[:, 4:] + cfg * (condtion[:, 4:] - uncondition[:, 4:])
return out

View File

@@ -0,0 +1,31 @@
from typing import Union, List
import torch
import torch.nn as nn
from typing import Callable
from src.diffusion.base.scheduling import BaseScheduler
class BaseSampler(nn.Module):
def __init__(self,
scheduler: BaseScheduler = None,
guidance_fn: Callable = None,
num_steps: int = 250,
guidance: Union[float, List[float]] = 1.0,
*args,
**kwargs
):
super(BaseSampler, self).__init__()
self.num_steps = num_steps
self.guidance = guidance
self.guidance_fn = guidance_fn
self.scheduler = scheduler
def _impl_sampling(self, net, noise, condition, uncondition):
raise NotImplementedError
def __call__(self, net, noise, condition, uncondition):
denoised = self._impl_sampling(net, noise, condition, uncondition)
return denoised

View File

@@ -0,0 +1,32 @@
import torch
from torch import Tensor
class BaseScheduler:
def alpha(self, t) -> Tensor:
...
def sigma(self, t) -> Tensor:
...
def dalpha(self, t) -> Tensor:
...
def dsigma(self, t) -> Tensor:
...
def dalpha_over_alpha(self, t) -> Tensor:
return self.dalpha(t) / self.alpha(t)
def dsigma_mul_sigma(self, t) -> Tensor:
return self.dsigma(t)*self.sigma(t)
def drift_coefficient(self, t):
alpha, sigma = self.alpha(t), self.sigma(t)
dalpha, dsigma = self.dalpha(t), self.dsigma(t)
return dalpha/(alpha + 1e-6)
def diffuse_coefficient(self, t):
alpha, sigma = self.alpha(t), self.sigma(t)
dalpha, dsigma = self.dalpha(t), self.dsigma(t)
return dsigma*sigma - dalpha/(alpha + 1e-6)*sigma**2
def w(self, t):
return self.sigma(t)

View File

@@ -0,0 +1,29 @@
import time
import torch
import torch.nn as nn
class BaseTrainer(nn.Module):
def __init__(self,
null_condition_p=0.1,
log_var=False,
):
super(BaseTrainer, self).__init__()
self.null_condition_p = null_condition_p
self.log_var = log_var
def preproprocess(self, raw_iamges, x, condition, uncondition):
bsz = x.shape[0]
if self.null_condition_p > 0:
mask = torch.rand((bsz), device=condition.device) < self.null_condition_p
mask = mask.expand_as(condition)
condition[mask] = uncondition[mask]
return raw_iamges, x, condition
def _impl_trainstep(self, net, ema_net, raw_images, x, y):
raise NotImplementedError
def __call__(self, net, ema_net, raw_images, x, condition, uncondition):
raw_images, x, condition = self.preproprocess(raw_images, x, condition, uncondition)
return self._impl_trainstep(net, ema_net, raw_images, x, condition)