Files
roboimi/roboimi/gr00t/models/backbone.py
2026-02-02 17:16:28 +08:00

169 lines
6.3 KiB
Python

# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
Backbone modules.
"""
from collections import OrderedDict
import torch
import torch.nn.functional as F
import torchvision
from torch import nn
from torchvision.models._utils import IntermediateLayerGetter
from typing import Dict, List
from util.misc import NestedTensor, is_main_process
from .position_encoding import build_position_encoding
class FrozenBatchNorm2d(torch.nn.Module):
"""
BatchNorm2d where the batch statistics and the affine parameters are fixed.
Copy-paste from torchvision.misc.ops with added eps before rqsrt,
without which any other policy_models than torchvision.policy_models.resnet[18,34,50,101]
produce nans.
"""
def __init__(self, n):
super(FrozenBatchNorm2d, self).__init__()
self.register_buffer("weight", torch.ones(n))
self.register_buffer("bias", torch.zeros(n))
self.register_buffer("running_mean", torch.zeros(n))
self.register_buffer("running_var", torch.ones(n))
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
missing_keys, unexpected_keys, error_msgs):
num_batches_tracked_key = prefix + 'num_batches_tracked'
if num_batches_tracked_key in state_dict:
del state_dict[num_batches_tracked_key]
super(FrozenBatchNorm2d, self)._load_from_state_dict(
state_dict, prefix, local_metadata, strict,
missing_keys, unexpected_keys, error_msgs)
def forward(self, x):
# move reshapes to the beginning
# to make it fuser-friendly
w = self.weight.reshape(1, -1, 1, 1)
b = self.bias.reshape(1, -1, 1, 1)
rv = self.running_var.reshape(1, -1, 1, 1)
rm = self.running_mean.reshape(1, -1, 1, 1)
eps = 1e-5
scale = w * (rv + eps).rsqrt()
bias = b - rm * scale
return x * scale + bias
class BackboneBase(nn.Module):
def __init__(self, backbone: nn.Module, train_backbone: bool, num_channels: int, return_interm_layers: bool):
super().__init__()
# for name, parameter in backbone.named_parameters(): # only train later layers # TODO do we want this?
# if not train_backbone or 'layer2' not in name and 'layer3' not in name and 'layer4' not in name:
# parameter.requires_grad_(False)
if return_interm_layers:
return_layers = {"layer1": "0", "layer2": "1", "layer3": "2", "layer4": "3"}
else:
return_layers = {'layer4': "0"}
self.body = IntermediateLayerGetter(backbone, return_layers=return_layers)
self.num_channels = num_channels
def forward(self, tensor):
xs = self.body(tensor)
return xs
# out: Dict[str, NestedTensor] = {}
# for name, x in xs.items():
# m = tensor_list.mask
# assert m is not None
# mask = F.interpolate(m[None].float(), size=x.shape[-2:]).to(torch.bool)[0]
# out[name] = NestedTensor(x, mask)
# return out
class Backbone(BackboneBase):
"""ResNet backbone with frozen BatchNorm."""
def __init__(self, name: str,
train_backbone: bool,
return_interm_layers: bool,
dilation: bool):
backbone = getattr(torchvision.models, name)(
replace_stride_with_dilation=[False, False, dilation],
pretrained=is_main_process(), norm_layer=FrozenBatchNorm2d) # pretrained # TODO do we want frozen batch_norm??
num_channels = 512 if name in ('resnet18', 'resnet34') else 2048
super().__init__(backbone, train_backbone, num_channels, return_interm_layers)
# class DINOv2BackBone(nn.Module):
# def __init__(self) -> None:
# super().__init__()
# self.body = torch.hub.load('facebookresearch/dinov2', 'dinov2_vits14')
# self.body.eval()
# self.num_channels = 384
# @torch.no_grad()
# def forward(self, tensor):
# xs = self.body.forward_features(tensor)["x_norm_patchtokens"]
# od = OrderedDict()
# od["0"] = xs.reshape(xs.shape[0], 22, 16, 384).permute(0, 3, 2, 1)
# return od
class DINOv2BackBone(nn.Module):
def __init__(self, return_interm_layers: bool = False) -> None:
super().__init__()
self.body = torch.hub.load('facebookresearch/dinov2', 'dinov2_vits14')
self.body.eval()
self.num_channels = 384
self.return_interm_layers = return_interm_layers
@torch.no_grad()
def forward(self, tensor):
features = self.body.forward_features(tensor)
if self.return_interm_layers:
layer1 = features["x_norm_patchtokens"]
layer2 = features["x_norm_patchtokens"]
layer3 = features["x_norm_patchtokens"]
layer4 = features["x_norm_patchtokens"]
od = OrderedDict()
od["0"] = layer1.reshape(layer1.shape[0], 22, 16, 384).permute(0, 3, 2, 1)
od["1"] = layer2.reshape(layer2.shape[0], 22, 16, 384).permute(0, 3, 2, 1)
od["2"] = layer3.reshape(layer3.shape[0], 22, 16, 384).permute(0, 3, 2, 1)
od["3"] = layer4.reshape(layer4.shape[0], 22, 16, 384).permute(0, 3, 2, 1)
return od
else:
xs = features["x_norm_patchtokens"]
od = OrderedDict()
od["0"] = xs.reshape(xs.shape[0], 22, 16, 384).permute(0, 3, 2, 1)
return od
class Joiner(nn.Sequential):
def __init__(self, backbone, position_embedding):
super().__init__(backbone, position_embedding)
def forward(self, tensor_list: NestedTensor):
xs = self[0](tensor_list)
out: List[NestedTensor] = []
pos = []
for name, x in xs.items():
out.append(x)
# position encoding
pos.append(self[1](x).to(x.dtype))
return out, pos
def build_backbone(args):
position_embedding = build_position_encoding(args)
train_backbone = args.lr_backbone > 0
return_interm_layers = args.masks
if args.backbone == 'dino_v2':
backbone = DINOv2BackBone()
else:
assert args.backbone in ['resnet18', 'resnet34']
backbone = Backbone(args.backbone, train_backbone, return_interm_layers, args.dilation)
model = Joiner(backbone, position_embedding)
model.num_channels = backbone.num_channels
return model